11 research outputs found

    EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits

    Full text link
    In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing the resulting unitary matrices into smaller ones using synthesis techniques. This enables increased parallelism and decreased latency in quantum pulses. EPOC also continuously optimizes the circuit by identifying equivalent representations, leading to further reductions in circuit latency while minimizing the computational overhead associated with quantum optimal control. We introduce circuit synthesis into the workflow of quantum optimal control for the first time and achieve a 31.74% reduction in latency compared to previous work and a 76.80% reduction compared to the gate-based method for creating pulses. The approach demonstrates the potential for significant performance improvements in quantum circuits while minimizing computational overhead

    SpacePulse: Combining Parameterized Pulses and Contextual Subspace for More Practical VQE

    Full text link
    In this paper, we explore the integration of parameterized quantum pulses with the contextual subspace method. The advent of parameterized quantum pulses marks a transition from traditional quantum gates to a more flexible and efficient approach to quantum computing. Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decomposition. Compared to solving the complete Hamiltonian via the traditional Variational Quantum Eigensolver (VQE), the computation of the contextual correction generally requires fewer qubits and measurements, thus improving computational efficiency. Plus a Pauli grouping strategy, our framework, SpacePulse, can minimize the quantum resource cost for the VQE and enhance the potential for processing larger molecular structures

    PAN: Pulse Ansatz on NISQ Machines

    Full text link
    Variational quantum algorithms (VQAs) have demonstrated great potentials in the NISQ era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. In quantum computers, the gate ansatz will eventually be transformed into control signals such as microwave pulses on transmons. And the control pulses need elaborate calibration to minimize the errors such as over-rotation and under-rotation. In the case of VQAs, this procedure will introduce redundancy, but the variational properties of VQAs can naturally handle problems of over-rotation and under-rotation by updating the amplitude and frequency parameters. Therefore, we propose PAN, a native-pulse ansatz generator framework for VQAs. We generate native-pulse ansatz with trainable parameters for amplitudes and frequencies. In our proposed PAN, we are tuning parametric pulses, which are natively supported on NISQ computers. Considering that parameter-shift rules do not hold for native-pulse ansatz, we need to deploy non-gradient optimizers. To constrain the number of parameters sent to the optimizer, we adopt a progressive way to generate our native-pulse ansatz. Experiments are conducted on both simulators and quantum devices to validate our methods. When adopted on NISQ machines, PAN obtained improved the performance with decreased latency by an average of 86%. PAN is able to achieve 99.336% and 96.482% accuracy for VQE tasks on H2 and HeH+ respectively, even with considerable noises in NISQ machines.Comment: 13 pages, 13 figure

    Graph Learning for Parameter Prediction of Quantum Approximate Optimization Algorithm

    Full text link
    In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of combinatorial optimization. However, practical application faces challenges due to current limitations on quantum computational resource. Our work optimizes QAOA initialization, using Graph Neural Networks (GNN) as a warm-start technique. This sacrifices affordable computational resource on classical computer to reduce quantum computational resource overhead, enhancing QAOA's effectiveness. Experiments with various GNN architectures demonstrate the adaptability and stability of our framework, highlighting the synergy between quantum algorithms and machine learning. Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing and contributing to practical applications

    Towards Advantages of Parameterized Quantum Pulses

    Full text link
    The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidance for pulse circuit design. To address this gap, our study proposes a set of design spaces for parameterized pulses, evaluating these pulses based on metrics such as expressivity, entanglement capability, and effective parameter dimension. Using these design spaces, we demonstrate the advantages of parameterized pulses over gate circuits in the aspect of duration and performance at the same time thus enabling high-performance quantum computing. Our proposed design space for parameterized pulse circuits has shown promising results in quantum chemistry benchmarks.Comment: 11 Figures, 4 Table

    RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training

    Full text link
    Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 ×\times and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches.Comment: Accepted to FASTML @ ICCAD 2023. 14 pages, 20 figure

    VIOLET: Visual Analytics for Explainable Quantum Neural Networks

    No full text
    SMU Lee Kong Chian Fellowshi

    TorchQuantum Case Study for Robust Quantum Circuits

    No full text
    corecore