141 research outputs found

    Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary

    Get PDF
    We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for similar to 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation

    A Proof-of-Quality-Factor (PoQF) based blockchain and edge computing for vehicular message dissemination

    Get PDF
    Blockchain applications in vehicular networks can offer many advantages including decentralization and improved security. However, most of consensus algorithms in blockchain are difficult to be implemented in a Vehicular Ad-Hoc Networks (VANET) without the help of edge computing services. For example, the connectivity in VANET only remains for a short period of time, which is not sufficient for highly time consuming consensus algorithms, e.g., Proof-of-Work, running on mobile edge nodes (vehicles). Other consensus algorithms also have some drawbacks, e.g. Proof-of-Stake (PoS) is biased towards nodes with higher amount of stakes and Proof-of-Elapsed-Time (PoET) is not highly secure against malicious nodes. For these reasons, we propose a voting blockchain based on Proof-of-Quality-Factor (PoQF) consensus algorithm, where threshold number of votes is controlled by edge computing servers. Specifically, PoQF includes voting for message validation and a competitive relay selection process based on probabilistic prediction of channel quality between transmitter and receiver. The performance bounds of failure and latency in message validation are obtained. The paper also analyzes the throughput of block generation, as well as the asymptotic latency, security and communication complexity of PoQF. An incentive distribution mechanism to reward honest nodes and punish malicious nodes is further presented and its effectiveness against collusion of nodes is proved using game theory. Simulation results show that PoQF reduces failure in validation by 11% and 15% as compared to PoS and PoET, respectively, and is 68 ms faster than PoET

    Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection

    Get PDF
    We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11x1010 Jones due to the simultaneously suppressed noise and enhanced gain

    Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection

    Get PDF
    We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11x1010 Jones due to the simultaneously suppressed noise and enhanced gain

    Wireless energy harvesting for Internet of Things

    Get PDF
    Internet of Things (IoT) is an emerging computing concept that describes a structure in which everyday physical objects, each provided with unique identifiers, are connected to the Internet without requiring human interaction. Long-term and self-sustainable operation are key components for realization of such a complex network, and entail energy-aware devices that are potentially capable of harvesting their required energy from ambient sources. Among different energy harvesting methods such as vibration, light and thermal energy extraction, wireless energy harvesting (WEH) has proven to be one of the most promising solutions by virtue of its simplicity, ease of implementation and availability. In this article, we present an overview of enabling technologies for efficient WEH, analyze the life-time of WEH-enabled IoT devices, and briefly study the future trends in the design of efficient WEH systems and research challenges that lie ahead

    A blockchain based federated learning for message dissemination in vehicular networks

    Get PDF
    Message exchange among vehicles plays an important role in ensuring road safety. Emergency message dissemination is usually carried out by broadcasting. However, high vehicle density and mobility lead to challenges in message dissemination such as broadcasting storm and low probability of packet reception. This paper proposes a federated learning based blockchain-assisted message dissemination solution. Similar to the incentive-based Proof-of-Work consensus in blockchain, vehicles compete to become a relay node (miner) by processing the proposed Proofof-Federated-Learning (PoFL) consensus which is embedded in the smart contract of blockchain. Both theoretical and practical analysis of the proposed solution are provided. Specifically, the proposed blockchain based federated learning results in more vehicles uploading their models in a given time, which can potentially lead to a more accurate model in less time as compared to the same solution without using blockchain. It also outperforms other blockchain approaches in reducing 65.2% of time delay in consensus, improving at least 8.2% message delivery rate and preserving privacy of neighbour vehicle more efficiently. The economic model to incentivize vehicles participating in federated learning and message dissemination is further analysed using Stackelberg game. The analysis of asymptotic complexity proves PoFL as the most scalable solution compared to other consensus algorithms in vehicular networks

    Effect of mineral-based amendments on rice (Oryza sativa L.) growth and cadmium content in plant and Polluted soil

    Get PDF
    Agricultural soils can be contaminated by industrial activities such as mining and smelting. Contamination with cadmium (Cd) can significantly exceed average background values, which can lead to uptake by rice plant and even harm to humans through food chain. In Hunan province, southern China, rice (Oryza sativa L.) is the main cereal, and human exposure to metallic contaminants through rice pathway is of particular interest. Shortage of land for rice growing means that contaminated agricultural soil is still cultivated for rice in Hunan. In the present work, a field experiment was undertaken to remediate Cd-contaminated paddy soil with three mineral amendments, namely sepiolite, bone char, and a silicon-based product (normally used as fertilizer). Average Cd concentration in the paddy soil was 2.85 mg/kg, significantly exceeding Chinese soil quality standards of China. Cd content was 0.59 mg/kg in sepiolite, 0.28 mg/kg in bone char, and 0.44 mg/kg in silicon fertilizer, respectively. Distribution fractions of Cd in soil followed the order of exchangeable (FI) > organic matter-bound (FIII) > residual (FIV) > oxide-bound (FII) without treatment, while exchangeable (FI) > residual (FIV) > organic matter-bound (FIII) > oxide-bound (FII) after treatment. With addition of three amendments, soil pH values and rice growth such as plant height and ripening rate increased. Concentrations of Cd in the rice plant (straw, husk, and unpolished rice) decreased after treatment. However, among three amendments, only the bone char addition reduced Cd accumulation in the rice plant below the Chinese standard value (0.2 mg/kg) and in the husk to below the Chinese feed hygiene standard for food (0.5 mg/kg)

    Super-tetragonal Sr4Al2O7: a versatile sacrificial layer for high-integrity freestanding oxide membranes

    Full text link
    Releasing the epitaxial oxide heterostructures from substrate constraints leads to the emergence of various correlated electronic phases and paves the way for integrations with advanced semiconductor technologies. Identifying a suitable water-soluble sacrificial layer, compatible with the high-quality epitaxial growth of oxide heterostructures, is currently the key to the development of large-scale freestanding oxide membranes. In this study, we unveil the super-tetragonal Sr4Al2O7 (SAOT) as a promising water-soluble sacrificial layer. The distinct low-symmetric crystal structure of SAOT enables a superior capability to sustain epitaxial strain, thus allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formations during the water-assisted release of freestanding oxide membranes. For a variety of non-ferroelectric oxide membranes, the crack-free areas can span up to a few millimeters in length scale. These compelling features, combined with the inherent high-water solubility, make SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative oxide electronics and flexible device designs.Comment: 5 figures and SI, it is the second version of this manuscrip
    corecore