20,612 research outputs found

    Improved Linear Precoding over Block Diagonalization in Multi-cell Cooperative Networks

    Full text link
    In downlink multiuser multiple-input multiple-output (MIMO) systems, block diagonalization (BD) is a practical linear precoding scheme which achieves the same degrees of freedom (DoF) as the optimal linear/nonlinear precoding schemes. However, its sum-rate performance is rather poor in the practical SNR regime due to the transmit power boost problem. In this paper, we propose an improved linear precoding scheme over BD with a so-called "effective-SNR-enhancement" technique. The transmit covariance matrices are obtained by firstly solving a power minimization problem subject to the minimum rate constraint achieved by BD, and then properly scaling the solution to satisfy the power constraints. It is proved that such approach equivalently enhances the system SNR, and hence compensates the transmit power boost problem associated with BD. The power minimization problem is in general non-convex. We therefore propose an efficient algorithm that solves the problem heuristically. Simulation results show significant sum rate gains over the optimal BD and the existing minimum mean square error (MMSE) based precoding schemes.Comment: 21 pages, 4 figure

    On the Performance of Spectrum Sensing Algorithms using Multiple Antennas

    Full text link
    In recent years, some spectrum sensing algorithms using multiple antennas, such as the eigenvalue based detection (EBD), have attracted a lot of attention. In this paper, we are interested in deriving the asymptotic distributions of the test statistics of the EBD algorithms. Two EBD algorithms using sample covariance matrices are considered: maximum eigenvalue detection (MED) and condition number detection (CND). The earlier studies usually assume that the number of antennas (K) and the number of samples (N) are both large, thus random matrix theory (RMT) can be used to derive the asymptotic distributions of the maximum and minimum eigenvalues of the sample covariance matrices. While assuming the number of antennas being large simplifies the derivations, in practice, the number of antennas equipped at a single secondary user is usually small, say 2 or 3, and once designed, this antenna number is fixed. Thus in this paper, our objective is to derive the asymptotic distributions of the eigenvalues and condition numbers of the sample covariance matrices for any fixed K but large N, from which the probability of detection and probability of false alarm can be obtained. The proposed methodology can also be used to analyze the performance of other EBD algorithms. Finally, computer simulations are presented to validate the accuracy of the derived results.Comment: IEEE GlobeCom 201
    • …
    corecore