3,845 research outputs found

    Degrees of Freedom of the 3-User Rank-Deficient MIMO Interference Channel

    Full text link
    We provide the degrees of freedom (DoF) characterization for the 33-user MT×MRM_T\times M_R multiple-input multiple-output (MIMO) interference channel (IC) with \emph{rank-deficient} channel matrices, where each transmitter is equipped with MTM_T antennas and each receiver with MRM_R antennas, and the interfering channel matrices from each transmitter to the other two receivers are of ranks D1D_1 and D2D_2, respectively. One important intermediate step for both the converse and achievability arguments is to convert the fully-connected rank-deficient channel into an equivalent partially-connected full-rank MIMO-IC by invertible linear transformations. As such, existing techniques developed for full-rank MIMO-IC can be incorporated to derive the DoF outer and inner bounds for the rank-deficient case. Our result shows that when the interfering links are weak in terms of the channel ranks, i.e., D1+D2min(MT,MR)D_1+D_2\leq \min(M_T, M_R), zero forcing is sufficient to achieve the optimal DoF. On the other hand, when D1+D2>min(MT,MR)D_1+D_2> \min(M_T, M_R), a combination of zero forcing and interference alignment is in general required for DoF optimality. The DoF characterization obtained in this paper unifies several existing results in the literature.Comment: 28 pages, 7 figures. To appear in IEEE transactions on wireless communication

    Engineering transverse Bragg resonance waveguides for large modal volume lasers

    Get PDF
    We recently analyzed a new class of laser amplifier based on transverse Bragg reflection. We show that the unique properties of Bragg confinement make it possible through modal loss discrimination to achieve single-transverse-mode operation with transverse modal size that is an order of magnitude larger than in lasers that depend on total internal reflection for transverse confinement

    Reliable Broadcast to A User Group with Limited Source Transmissions

    Full text link
    In order to reduce the number of retransmissions and save power for the source node, we propose a two-phase coded scheme to achieve reliable broadcast from the source to a group of users with minimal source transmissions. In the first phase, the information packets are encoded with batched sparse (BATS) code, which are then broadcasted by the source node until the file can be cooperatively decoded by the user group. In the second phase, each user broadcasts the re-encoded packets to its peers based on their respective received packets from the first phase, so that the file can be decoded by each individual user. The performance of the proposed scheme is analyzed and the rank distribution at the moment of decoding is derived, which is used as input for designing the optimal BATS code. Simulation results show that the proposed scheme can reduce the total number of retransmissions compared with the traditional single-phase broadcast with optimal erasure codes. Furthermore, since a large number of transmissions are shifted from the source node to the users, power consumptions at the source node is significantly reduced.Comment: ICC 2015. arXiv admin note: substantial text overlap with arXiv:1504.0446

    Higher-order Topological Hyperbolic Lattices

    Full text link
    A hyperbolic lattice allows for any pp-fold rotational symmetry, in stark contrast to a two-dimensional crystalline material, where only twofold, threefold, fourfold or sixfold rotational symmetry is permitted. This unique feature motivates us to ask whether the enriched rotational symmetry in a hyperbolic lattice can lead to any new topological phases beyond a crystalline material. Here, by constructing and exploring tight-binding models in hyperbolic lattices, we theoretically demonstrate the existence of higher-order topological phases in hyperbolic lattices with eight-fold, twelve-fold, sixteen-fold or twenty-fold rotational symmetry, which is not allowed in a crystalline lattice. Since such models respect the combination of time-reversal symmetry and pp-fold (p=p=8, 12, 16 or 20) rotational symmetry, pp zero-energy corner modes are protected. For the hyperbolic \{8,3\} lattice, we find a gapped, a gapless and a reentrant gapped higher-order topological hyperbolic phases. The reentrant phase arises from finite-size effects, which open the gap of edge states while leave the gap of corner modes unchanged. Our results thus open the door to studying higher-order topological phases in hyperbolic lattices.Comment: 10 pages, 8 figure

    Highly sensitive fiber Bragg grating refractive index sensors

    Get PDF
    We combine fiber Bragg grating (FBG) technology with a wet chemical etch-erosion procedure and demonstrate two types of refractive index sensors using single-mode optical fibers. The first index sensor device is an etch-eroded single FBG with a radius of 3 μm, which is used to measure the indices of four different liquids. The second index sensor device is an etch-eroded fiber Fabry-Perot interferometer (FFPI) with a radius of ~1.5 μm and is used to measure the refractive indices of isopropyl alcohol solutions of different concentrations. Due to its narrower resonance spectral feature, the FFPI sensor has a higher sensitivity than the FBG sensor and can detect an index variation of 1.4 X 10(-5). Since we can measure the reflection signal, these two types of sensors can be fabricated at the end of a fiber and used as point sensors

    V2X Content Distribution Based on Batched Network Coding with Distributed Scheduling

    Full text link
    Content distribution is an application in intelligent transportation system to assist vehicles in acquiring information such as digital maps and entertainment materials. In this paper, we consider content distribution from a single roadside infrastructure unit to a group of vehicles passing by it. To combat the short connection time and the lossy channel quality, the downloaded contents need to be further shared among vehicles after the initial broadcasting phase. To this end, we propose a joint infrastructure-to-vehicle (I2V) and vehicle-to-vehicle (V2V) communication scheme based on batched sparse (BATS) coding to minimize the traffic overhead and reduce the total transmission delay. In the I2V phase, the roadside unit (RSU) encodes the original large-size file into a number of batches in a rateless manner, each containing a fixed number of coded packets, and sequentially broadcasts them during the I2V connection time. In the V2V phase, vehicles perform the network coded cooperative sharing by re-encoding the received packets. We propose a utility-based distributed algorithm to efficiently schedule the V2V cooperative transmissions, hence reducing the transmission delay. A closed-form expression for the expected rank distribution of the proposed content distribution scheme is derived, which is used to design the optimal BATS code. The performance of the proposed content distribution scheme is evaluated by extensive simulations that consider multi-lane road and realistic vehicular traffic settings, and shown to significantly outperform the existing content distribution protocols.Comment: 12 pages and 9 figure
    corecore