612 research outputs found

    Inherent Safer Design for Chemical Process of 1,4-dioldiacetate-2-butene Oxidized by Ozone

    Get PDF
    PresentationOxidation reaction is the typical thermal runaway reaction. The reaction of 1,4-dioldiacetate-2- Butene oxidized by ozone was chosen to study the thermal hazards during the chemical process and the inherent safer designs (ISD) were proposed after analysis. The Qualitative Assessment for Inherently Safer Design (QAISD) was used to identify the risk during the chemical process. Meanwhile, the Reaction Calorimeter (RC1e) was used to analyze the thermal hazards of the chemical process. Two Inherent safer designs were proposed to increase the safe level of the process. ISD I is the improved reaction condition of reaction temperature at -5°C and ventilation rate of 200L•h-1, as well, ISDII is using a tubular reactor. The results indicate that the classification of the reaction hazard was lower with improvements of two ISDs, and the severity was reduced by 43%. Moreover, the inherent safety level of the reaction was increased by ISD I &IIof 63% and 43.4% respectively, which both have positive effects on inherent safety theories of "minimize", "substitute" and "moderate"

    Thermal Analysis and Characterization of Polystyrene Initiated by Benzoyl Peroxide

    Get PDF
    PresentationBased on the complexity of the polystyrene polymerization mechanism initiated by benzoyl peroxide (BPO), the thermal risk of the reaction process was estimated using thermal analysis and characterization. The polymerization process was thermally analysed using an adiabatic rate calorimeter and differential scanning calorimeter. The results demonstrated that the onset reaction temperature, adiabatic temperature rise, and maximum temperature of the synthesis reaction of BPO-initiated polymerization were lower than those of thermos initiated polymerization. Moreover, nuclear magnetic resonance imaging, gel permeation chromatography, and Fourier transform infrared spectrometry were used to characterize the polymerization products obtained under the two initiation conditions. The polystyrene obtained using the two initiation methods had the same hydrogen structure; however, their molecular weight and distribution uniformity differed considerably, and the BPO-initiated process was discovered to include the effects of the thermos initiated process. Moreover, the free radicals produced by BPO decomposition participated in the chain reaction of polystyrene polymerization, accelerated instantaneous grain growth, and promoted the formation of short- chain polystyrene. In summary, the BPO-initiated polymerization process exhibited the desired thermal safety characteristics and has potential for practical use

    Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method

    Get PDF
    Current photocatalytic uranium (U) extraction methods have intrinsic obstacles, such as the recombination of charge carriers, and the deactivation of catalysts by extracted U. Here we show that, by applying a bias potential on the photocatalyst, the photoelectrochemical (PEC) method can address these limitations. We demonstrate that, owing to efficient spatial charge-carriers separation driven by the applied bias, the PEC method enables efficient and durable U extraction. The effects of multiple operation conditions are investigated. The U extraction proceeds via single-step one-electron reduction, resulting in the formation of pentavalent U, which can facilitate future studies on this often-overlooked U species. In real seepage water the PEC method achieves an extraction capacity of 0.67 gU m(-3).h(-1) without deactivation for 156 h continuous operation, which is 17 times faster than the photocatalytic method. This work provides an alternative tool for U resource recovery and facilitates future studies on U(V) chemistry

    Manipulating single excess electrons in monolayer transition metal dihalide

    Full text link
    Polarons are entities of excess electrons dressed with local response of lattices, whose atomic-scale characterization is essential for understanding the many body physics arising from the electron-lattice entanglement, but yet difficult to achieve. Here, using scanning tunneling microscopy and spectroscopy (STM/STS), we show the visualization and manipulation of single polarons with different origin, i.e., electronic and conventional polarons, in monolayer CoCl2, that are grown on HOPG substrate via molecular beam epitaxy. Four types of polarons are identified, all inducing upward local band bending, but exhibiting distinct appearances, lattice occupations, polaronic states and local lattice distortions. First principles calculations unveil three types of polarons are stabilized by electron-electron interaction. The type-4 polaron, however, are driven by conventional lattice distortions. All the four types of polarons can be created, moved, erased, and moreover interconverted individually by the STM tip, allowing precise control of single polarons unprecedently. This finding identifies the rich category of polarons and their feasibility of manipulation in CoCl2, which can be generalized to other transition metal halides.Comment: 23 pages, 5 figure

    Comparative analysis of the effect of electromyogram to bispectral index and 95% spectral edge frequency under remimazolam and propofol anesthesia: a prospective, randomized, controlled clinical trial

    Get PDF
    BackgroundBispectral index (BIS), an index used to monitor the depth of anesthesia, can be interfered with by the electromyogram (EMG) signal. The 95% spectral edge frequency (SEF95) also can reflect the sedation depth. Remimazolam in monitored anesthesia care results in higher BIS values than propofol, though in the same sedation level assessed by Modified Observers Assessment of Alertness and Sedation (MOAA/S). Our study aims to illustrate whether EMG is involved in remimazolam causing higher BIS value than propofol preliminarily and to explore the correlations among BIS, EMG, and SEF95 under propofol and remimazolam anesthesia.Patients and methodsTwenty-eight patients were randomly divided into propofol (P) and remimazolam (RM) groups. Patients in the two groups received alfentanil 10 μg/kg, followed by propofol 2 mg/kg and remimazolam 0.15 mg/kg. Blood pressure (BP), heart rate (HR), and oxygen saturation (SpO2) were routinely monitored. The BIS, EMG, and SEF95 were obtained through BIS VISTATM. The primary outcomes were BIS, EMG, and the correlation between BIS and EMG in both groups. Other outcomes were SEF95, the correlation between BIS and SEF95, and the correlation between EMG and SEF95. And all the statistical and comparative analysis between these signals was conducted with SPSS 26.0 and GraphPad Prism 8.ResultsBIS values, EMG, and SEF95 were significantly higher in the RM group than in the P group (all p < 0.001). There was a strong positive correlation between BIS and EMG in the RM group (r = 0.416). Nevertheless, the BIS in the P group showed a weak negative correlation with EMG (r = −0.219). Both P (r = 0.787) and RM group (r = 0.559) had a reasonably significant correlation coefficient between BIS and SEF95. SEF95 almost did not correlate with EMG in the RM group (r = 0.101).ConclusionBispectral index can be interfered with high EMG intensity under remimazolam anesthesia. However, EMG can hardly affect the accuracy of BIS under propofol anesthesia due to low EMG intensity and a weak negative correlation between EMG and BIS. Moreover, SEF95 may have a great application prospect in predicting the sedation condition of remimazolam
    • …
    corecore