5,803 research outputs found

    Coherence assisted resonance with sub-lifetime-limited linewidth

    Get PDF
    We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure

    Magnetic-flux-controlled giant Fano factor for the coherent tunneling through a parallel double-quantum-dot

    Full text link
    We report our studies of zero-frequency shot noise in tunneling through a parallel-coupled quantum dot interferometer by employing number-resolved quantum rate equations. We show that the combination of quantum interference effect between two pathways and strong Coulomb repulsion could result in a giant Fano factor, which is controllable by tuning the enclosed magnetic flux.Comment: 11 pages, 2 figure

    A DHT-Based Multicarrier Modulation System with Pairwise ML Detection

    Get PDF
    This paper presents a complex-valued discrete multicarrier modulation (MCM) system based on the real-valued discrete Hartley transform (DHT) and its inverse (IDHT). Unlike the conventional discrete Fourier transform (DFT), the DHT cannot diagonalize multipath fading channels due to its inherent properties, and this results in mutual interference between subcarriers of the same mirror-symmetrical pair. We explore this interference pattern in order to seek an optimal solution to utilize channel diversity for enhancing the bit error rate (BER) performance of the system. It is shown that the optimal channel diversity gain can be achieved via pairwise maximum likelihood (ML) detection, taking into account not only the subcarrier's own channel quality but also the channel state information of its mirror-symmetrical peer. Performance analysis indicates that DHT-based MCM can mitigate fast fading effects by averaging channel power gains of each mirror-symmetrical pair of subcarriers. Simulation results show that the proposed scheme has a substantial improvement in BER over the conventional DFT-based MCM system

    Spatial-temporal Graph Based Multi-channel Speaker Verification With Ad-hoc Microphone Arrays

    Full text link
    The performance of speaker verification degrades significantly in adverse acoustic environments with strong reverberation and noise. To address this issue, this paper proposes a spatial-temporal graph convolutional network (GCN) method for the multi-channel speaker verification with ad-hoc microphone arrays. It includes a feature aggregation block and a channel selection block, both of which are built on graphs. The feature aggregation block fuses speaker features among different time and channels by a spatial-temporal GCN. The graph-based channel selection block discards the noisy channels that may contribute negatively to the system. The proposed method is flexible in incorporating various kinds of graphs and prior knowledge. We compared the proposed method with six representative methods in both real-world and simulated environments. Experimental results show that the proposed method achieves a relative equal error rate (EER) reduction of 15.39%\mathbf{15.39\%} lower than the strongest referenced method in the simulated datasets, and 17.70%\mathbf{17.70\%} lower than the latter in the real datasets. Moreover, its performance is robust across different signal-to-noise ratios and reverberation time
    corecore