1,337 research outputs found

    Simulating Z_2 topological insulators with cold atoms in a one-dimensional optical lattice

    Full text link
    We propose an experimental scheme to simulate and detect the properties of time-reversal invariant topological insulators, using cold atoms trapped in one-dimensional bichromatic optical lattices. This system is described by a one-dimensional Aubry-Andre model with an additional SU(2) gauge structure, which captures the essential properties of a two-dimensional Z2 topological insulator. We demonstrate that topologically protected edge states, with opposite spin orientations, can be pumped across the lattice by sweeping a laser phase adiabatically. This process constitutes an elegant way to transfer topologically protected quantum states in a highly controllable environment. We discuss how density measurements could provide clear signatures of the topological phases emanating from our one-dimensional system.Comment: 5 pages +, 3 figures, to appear in Physical Review

    Probing Half-odd Topological Number with Cold Atoms in a Non-Abelian Optical Lattice

    Full text link
    We propose an experimental scheme to probe the contribution of a single Dirac cone to the Hall conductivity as half-odd topological number sequence. In our scheme, the quantum anomalous Hall effect as in graphene is simulated with cold atoms trapped in an optical lattice and subjected to a laser-induced non-Abelian gauge field. By tuning the laser intensity to change the gauge flux, the energies of the four Dirac points in the first Brillouin zone are shifted with each other and the contribution of the single Dirac cone to the total atomic Hall conductivity is manifested. We also show such manifestation can be experimentally probed with atomic density profile measurements.Comment: 5 pages, 3 figure

    Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Get PDF
    [[abstract]]Background: Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA) as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results: We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s). The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK), Akt and glycogen synthase kinase-3β (GSK-3β). Conclusion: We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s) of the etiologic agents. ? 2009 Huang et al; licensee BioMed Central Ltd
    corecore