781 research outputs found

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro

    Investigation of Langdon effect on the nonlinear evolution of SRS from the early-stage inflation to the late-stage development of secondary instabilities

    Full text link
    In a laser-irradiated plasma, the Langdon effect can result in a super-Gaussian electron energy distribution function (EEDF), imposing significant influences on the stimulated backward Raman scattering (SRS). In this work, the influence of a super-Gaussian EEDF on the nonlinear evolution of SRS is investigated by three wave model simulation and Vlasov-Maxwell simulation for plasma parameters covering a wide range of k{\lambda}De from 0.19 to 0.48 at both high and low intensity laser drives. In the early-stage of SRS evolution, it is found that besides the kinetic effects due to electron trapping [Phys. Plasmas 25, 100702 (2018)], the Langdon effect can also significantly widen the parameter range for the absolute growth of SRS, and the time for the absolute SRS to reach saturation is greatly shorten by Langdon effect within certain parameter region. In the late-stage of SRS, when secondary instabilities such as decay of the electron plasma wave to beam acoustic modes, rescattering, and Langmuir decay instability become important, the Langdon effect can influence the reflectivity of SRS by affecting the secondary processes. The comprehension of Langdon effect on nonlinear evolution and saturation of SRS would contribute to a better understanding and prediction of SRS in inertial confinement fusion

    1-(2-Methoxy­anilino)anthraquinone

    Get PDF
    In the title compound, C21H15NO3, the dihedral angle formed between the aromatic ring systems is 71.50 (3)°. The meth­oxy group is coplanar with the benzene ring to which it is connected, the C—O—C—C torsion angle being 6.37 (17)°. The observed conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring

    Causal clustering: design of cluster experiments under network interference

    Full text link
    This paper studies the design of cluster experiments to estimate the global treatment effect in the presence of spillovers on a single network. We provide an econometric framework to choose the clustering that minimizes the worst-case mean-squared error of the estimated global treatment effect. We show that the optimal clustering can be approximated as the solution of a novel penalized min-cut optimization problem computed via off-the-shelf semi-definite programming algorithms. Our analysis also characterizes easy-to-check conditions to choose between a cluster or individual-level randomization. We illustrate the method's properties using unique network data from the universe of Facebook's users and existing network data from a field experiment

    Structural Health Monitoring for Composite Materials

    Get PDF
    Computer networking & communication

    A Novel Role of Protein Tyrosine Kinase2 in Mediating Chloride Secretion in Human Airway Epithelial Cells

    Get PDF
    Ca2+ activated Cl− channels (CaCC) are up-regulated in cystic fibrosis (CF) airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl− secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl− secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca2+ and Cl− secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells
    corecore