2 research outputs found

    A Relay System for Semantic Image Transmission based on Shared Feature Extraction and Hyperprior Entropy Compression

    Full text link
    Nowadays, the need for high-quality image reconstruction and restoration is more and more urgent. However, most image transmission systems may suffer from image quality degradation or transmission interruption in the face of interference such as channel noise and link fading. To solve this problem, a relay communication network for semantic image transmission based on shared feature extraction and hyperprior entropy compression (HEC) is proposed, where the shared feature extraction technology based on Pearson correlation is proposed to eliminate partial shared feature of extracted semantic latent feature. In addition, the HEC technology is used to resist the effect of channel noise and link fading and carried out respectively at the source node and the relay node. Experimental results demonstrate that compared with other recent research methods, the proposed system has lower transmission overhead and higher semantic image transmission performance. Particularly, under the same conditions, the multi-scale structural similarity (MS-SSIM) of this system is superior to the comparison method by approximately 0.2

    Non-Orthogonal Multiple Access Enhanced Multi-User Semantic Communication

    Full text link
    Semantic communication serves as a novel paradigm and attracts the broad interest of researchers. One critical aspect of it is the multi-user semantic communication theory, which can further promote its application to the practical network environment. While most existing works focused on the design of end-to-end single-user semantic transmission, a novel non-orthogonal multiple access (NOMA)-based multi-user semantic communication system named NOMASC is proposed in this paper. The proposed system can support semantic tranmission of multiple users with diverse modalities of source information. To avoid high demand for hardware, an asymmetric quantizer is employed at the end of the semantic encoder for discretizing the continuous full-resolution semantic feature. In addition, a neural network model is proposed for mapping the discrete feature into self-learned symbols and accomplishing intelligent multi-user detection (MUD) at the receiver. Simulation results demonstrate that the proposed system holds good performance in non-orthogonal transmission of multiple user signals and outperforms the other methods, especially at low-to-medium SNRs. Moreover, it has high robustness under various simulation settings and mismatched test scenarios.Comment: accepted by IEEE Transactions on Cognitive Communications and Networkin
    corecore