25 research outputs found

    A Channel Phase Error Correction Method Based on Joint Quality Function of GF-3 SAR Dual-Channel Images

    No full text
    Multichannel SAR is an effective approach to solving the contradiction between high azimuth resolution and wide swath. The goal of this paper is to obtain a new and effective method for estimating and compensating the interchannel phase error of the Chinese GF-3 Synthetic aperture radar (SAR). A channel phase error correction method based on the optimal value of the image domain quality function is proposed. In this method, the phase error is initially compensated using the correlation function method. In the fine correction of dual-channel phase error, a heuristic search algorithm is used to estimate the residual phase by searching the extremum of the quality function. After phase compensation in the image domain, the azimuth ambiguities caused by the remaining phase are eliminated. The proposed image domain processing method provides a new idea for channel phase error correction. The measured data of high-resolution GF-3 dual-channel ultrafine imaging mode verifies the validity of this method

    Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides

    No full text
    The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer

    Refocusing of Moving Ships in Squint SAR Images Based on Spectrum Orthogonalization

    No full text
    Moving ship refocusing is challenging because the target motion parameters are unknown. Moreover, moving ships in squint synthetic aperture radar (SAR) images obtained by the back-projection (BP) algorithm usually suffer from geometric deformation and spectrum winding. Therefore, a spectrum-orthogonalization algorithm that refocuses moving ships in squint SAR images is presented. First, “squint minimization” is introduced to correct the spectrum by two spectrum compression functions: one to align the spectrum centers and another to translate the inclined spectrum into orthogonalized form. Then, the precise analytic function of the two-dimensional (2D) wavenumber spectrum is derived to obtain the phase error. Finally, motion compensation is performed in the two-dimensional wavenumber domain after the motion parameter is estimated by maximizing the image sharpness. This method has low computational complexity because it lacks interpolation and can be implemented by the inverse fast Fourier translation (IFFT) and fast Fourier translation (FFT). Processing results of simulation experiments and the GaoFen-3 squint SAR data validate the effectiveness of this method

    Rapid and Ultrasensitive Detection of Methicillin-Resistant Staphylococcus aureus Based on CRISPR-Cas12a Combined With Recombinase-Aided Amplification.

    No full text
    Staphylococcus aureus is one of the main pathogens causing hospital and community-acquired infections, in particular, infections caused by methicillin-resistant Staphylococcus aureus (MRSA) cause a higher mortality rate than those caused by methicillin-sensitive strains, which poses a serious global public health problem. Therefore, rapid and ultrasensitive detection of patients with clinical MRSA infection and timely control of infection are essential. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) based on nucleic acid detection methods are well-known for its high specificity and sensitivity and programmability. Here, we successfully proposed a method based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA) through fluorescent readout to achieve accurate identification and highly sensitive detection of MRSA in clinical samples. Results showed that the limit of detection (LoD) of the RAA-Cas12a method could reach 10 copies/ÎĽl at 60 min of reaction. Specificity tests showed that the method could distinguish MRSA from clinically common bacteria. The results of RAA-Cas12a were consistent with that of antimicrobial susceptibility tests (AST) and polymerase chain reaction (PCR) in 83 clinical samples. These results indicated that the detection method based on RAA-Cas12a has high sensitivity and specificity, and provides important value for rapid detection of MRSA

    Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China

    No full text
    Groundwater is a critical water resource for human survival and economic development in arid and semi-arid areas. It is crucial to understand the groundwater circulation and hydrochemical evolution for sustainable management and utilization of groundwater resources in those areas. To this end, an investigation of the hydrochemical characteristics of surface water and groundwater was conducted in Nomhon, an arid area located in the Qaidam Basin, northwest China, by using hydrochemical (major and trace elements) and stable isotopes (δD and δ18O) approaches. Stable isotopes and ion ratios were analyzed to determine the recharge sources, hydrochemistry characteristics, and major hydrogeochemical processes. Meanwhile, inverse geochemistry modeling was applied to quantitatively determine the mass transfer of hydrogeochemical processes. The results showed that groundwater in the study area is mainly recharged by atmospheric precipitation in mountainous areas, and the groundwater in the center of basin might originate from ancient water in cold and humid environments. Along the groundwater flow path, the TDS of groundwater increased gradually from fresh to salty (ranging from 462.50 to 19,604.40 mg/L), and the hydrochemical type changed from Cl·HCO3⁻Na·Mg·Ca to Cl⁻Na. Groundwater chemical composition and mass balance modeling results indicated that from alluvial fan to lacustrine plain, the main hydrogeochemical processes changed from the dissolution of halite and albite and the precipitation of dolomite and kaolinite to the dissolution of halite and gypsum, precipitation of calcite, redox (SO42− reduction), and cation exchange. This study would be helpful for water resources management in this area and other similar areas

    Squinted TOPS SAR Imaging Based on Modified Range Migration Algorithm and Spectral Analysis

    No full text

    Investigation on indoor airflow and contaminant dispersion of diffuse ceiling ventilation in heating and cooling modes

    No full text
    This paper systematically investigates the indoor airflow and contaminant dispersion of diffuse ceiling ventilation (DCV) for space heating and cooling. A numerical model of the office with DCV is built and validated. The indoor thermal comfort and air quality (IAQ) under different cases are analyzed. Simultaneously, different indices are employed to determine the influence of exhaust positions and air change rates on the system. The results indicate that DCV can provide a satisfying thermal environment both in heating and cooling modes, and there is no reverse flow from the room to the plenum. Besides, the visualizations of indoor airflow, temperature distributions, and mean age of air (MAA) show the different characteristics during heating and cooling. The ranges of contaminant removal effectiveness (CRE) and temperature effectiveness (TE) are 0.87–1.00 and 0.79–1.55 for heating, respectively. For cooling, they are 0.96–1.23 (CRE) and 0.92–1.06 (TE), respectively. Although the TE for heating is slightly higher than that of cooling, the CO2 concentrations and CRE manifest that DCV performs better for space cooling. Moreover, the results show that the exhaust positions influence TE more than CRE, especially for heating. Within the measured air change rates, it is found that the increase of air change per hour (ACH) can aid to the ventilation effectiveness of DCV. Meanwhile, the linear regression equations between ACHs and MAA are obtained. This research is helpful to reveal the flow mechanisms of DCV and guides the design and operation of the system

    Coxsackievirus A2 Leads to Heart Injury in a Neonatal Mouse Model

    No full text
    Coxsackievirus A2 (CVA2) has emerged as an active pathogen that has been implicated in hand, foot, and mouth disease (HFMD) and herpangina outbreaks worldwide. It has been reported that severe cases with CVA2 infection develop into heart injury, which may be one of the causes of death. However, the mechanisms of CVA2-induced heart injury have not been well understood. In this study, we used a neonatal mouse model of CVA2 to investigate the possible mechanisms of heart injury. We detected CVA2 replication and apoptosis in heart tissues from infected mice. The activity of total aspartate transaminase (AST) and lactate dehydrogenase (LDH) was notably increased in heart tissues from infected mice. CVA2 infection also led to the disruption of cell-matrix interactions in heart tissues, including the increases of matrix metalloproteinase (MMP)3, MMP8, MMP9, connective tissue growth factor (CTGF) and tissue inhibitors of metalloproteinases (TIMP)4. Infiltrating leukocytes (CD45+ and CD11b+ cells) were observed in heart tissues of infected mice. Correspondingly, the expression levels of inflammatory cytokines in tissue lysates of hearts, including tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), IL6 and monocyte chemoattractant protein-1 (MCP-1) were significantly elevated in CVA2 infected mice. Inflammatory signal pathways in heart tissues, including phosphatidylinositol 3-kinase (PI3K)-AKT, mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB), were also activated after infection. In summary, CVA2 infection leads to heart injury in a neonatal mouse model, which might be related to viral replication, increased expression levels of MMP-related enzymes and excessive inflammatory responses
    corecore