1,367 research outputs found

    Group Sparse CNNs for Question Classification with Answer Sets

    Full text link
    Question classification is an important task with wide applications. However, traditional techniques treat questions as general sentences, ignoring the corresponding answer data. In order to consider answer information into question modeling, we first introduce novel group sparse autoencoders which refine question representation by utilizing group information in the answer set. We then propose novel group sparse CNNs which naturally learn question representation with respect to their answers by implanting group sparse autoencoders into traditional CNNs. The proposed model significantly outperform strong baselines on four datasets.Comment: 6, ACL 201

    Dependency-based Convolutional Neural Networks for Sentence Embedding

    Full text link
    In sentence modeling and classification, convolutional neural network approaches have recently achieved state-of-the-art results, but all such efforts process word vectors sequentially and neglect long-distance dependencies. To exploit both deep learning and linguistic structures, we propose a tree-based convolutional neural network model which exploit various long-distance relationships between words. Our model improves the sequential baselines on all three sentiment and question classification tasks, and achieves the highest published accuracy on TREC.Comment: this paper has been accepted by ACL 201

    Analysis of Q-learning with Adaptation and Momentum Restart for Gradient Descent

    Full text link
    Existing convergence analyses of Q-learning mostly focus on the vanilla stochastic gradient descent (SGD) type of updates. Despite the Adaptive Moment Estimation (Adam) has been commonly used for practical Q-learning algorithms, there has not been any convergence guarantee provided for Q-learning with such type of updates. In this paper, we first characterize the convergence rate for Q-AMSGrad, which is the Q-learning algorithm with AMSGrad update (a commonly adopted alternative of Adam for theoretical analysis). To further improve the performance, we propose to incorporate the momentum restart scheme to Q-AMSGrad, resulting in the so-called Q-AMSGradR algorithm. The convergence rate of Q-AMSGradR is also established. Our experiments on a linear quadratic regulator problem show that the two proposed Q-learning algorithms outperform the vanilla Q-learning with SGD updates. The two algorithms also exhibit significantly better performance than the DQN learning method over a batch of Atari 2600 games.Comment: This paper extends the work presented at the 2020 International Joint Conferences on Artificial Intelligence with supplementary material

    TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator and Predictor

    Full text link
    Trajectory generation and prediction are two interwoven tasks that play important roles in planner evaluation and decision making for intelligent vehicles. Most existing methods focus on one of the two and are optimized to directly output the final generated/predicted trajectories, which only contain limited information for critical scenario augmentation and safe planning. In this work, we propose a novel behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior such as aggressiveness and intention in the latent space, using semi-supervised adversarial autoencoder and domain knowledge in transportation. Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks: the model can generate diverse, controllable and realistic trajectories to enhance planner optimization in safety-critical and long-tailed scenarios, and it can provide prediction of critical behavior in addition to the final trajectories for decision making. Experimental results demonstrate that our method achieves promising performance on both trajectory generation and prediction.Comment: an updated version, change figures and references. 8 pages, robotics conference, about trajectory augmentation and prediction for intelligent vehicle system

    Safety-driven Interactive Planning for Neural Network-based Lane Changing

    Full text link
    Neural network-based driving planners have shown great promises in improving task performance of autonomous driving. However, it is critical and yet very challenging to ensure the safety of systems with neural network based components, especially in dense and highly interactive traffic environments. In this work, we propose a safety-driven interactive planning framework for neural network-based lane changing. To prevent over conservative planning, we identify the driving behavior of surrounding vehicles and assess their aggressiveness, and then adapt the planned trajectory for the ego vehicle accordingly in an interactive manner. The ego vehicle can proceed to change lanes if a safe evasion trajectory exists even in the predicted worst case; otherwise, it can stay around the current lateral position or return back to the original lane. We quantitatively demonstrate the effectiveness of our planner design and its advantage over baseline methods through extensive simulations with diverse and comprehensive experimental settings, as well as in real-world scenarios collected by an autonomous vehicle company
    • …
    corecore