184 research outputs found

    Characterization of ultrathin InSb nanocrystals film deposited on SiO2/Si substrate

    Get PDF
    Recently, solid-phase recrystallization of ultrathin indium antimonide nanocrystals (InSb NCs (films grown on SiO2/Si substrate is very attractive, because of the rapid development of thermal annealing technique. In this study, the recrystallization behavior of 35 nm indium antimonide film was studied. Through X-ray diffraction (XRD) analysis, it is demonstrated that the InSb film is composed of nanocrystals after high temperature rapid thermal annealing. Scanning electron microscopy shows that the film has a smooth surface and is composed of tightly packed spherical grains, the average grain size is about 12.3 nm according to XRD results. The optical bandgap of the InSb NCs film analyzed by Fourier Transform infrared spectroscopy measurement is around 0.26 eV. According to the current-voltage characteristics of the InSb NCs/SiO2/p-Si heterojunction, the film has the rectifying behavior and the turn-on voltage value is near 1 V

    11β-HSD1 inhibition ameliorates diabetes-induced cardiomyocyte hypertrophy and cardiac fibrosis through modulation of EGFR activity

    Get PDF
    11β-HSD1 has been recognized as a potential therapeutic target for type 2 diabetes. Recent studies have shown that hyperglycemia leads to activation of 11β-HSD1, increasing the intracellular glucocorticoid levels. Excess glucocorticoids may lead to the clinical manifestations of cardiac injury. Therefore, the aim of this study is to investigate whether 11β-HSD1 activation contributes to the development of diabetic cardiomyopathy. To investigate the role of 11β-HSD1, we administered a selective 11β-HSD1 inhibitor in type 1 and type 2 murine models of diabetes and in cultured cardiomyocytes. Our results show that diabetes increases cortisone levels in heart tissues. 11β-HSD1 inhibitor decreased cortisone levels and ameliorated all structural and functional features of diabetic cardiomyopathy including fibrosis and hypertrophy. We also show that high levels of glucose caused cardiomyocyte hypertrophy and increased matrix protein deposition in culture. Importantly, inhibition of 11β-HSD1 attenuated these changes. Moreover, we show that 11β-HSD1 activation mediates these changes through modulating EGFR phosphorylation and activity. Our findings demonstrate that 11β-HSD1 contributes to the development of diabetic cardiomyopathy through activation of glucocorticoid and EGFR signaling pathway. These results suggest that inhibition of 11β-HSD1 might be a therapeutic strategy for diabetic cardiomyopathy, which is independent of its effects on glucose homeostasis

    Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Get PDF
    A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g1 at 0.1 C and can retain a capacity of 765 mAh g1 after 100 cycles in potential range from 1 V to 3 V

    Lewis Y Promotes Growth and Adhesion of Ovarian Carcinoma-Derived RMG-I Cells by Upregulating Growth Factors

    Get PDF
    Lewis y (LeY) antigen is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Overexpression of LeY is frequently observed in epithelial-derived cancers and has been correlated to the pathological staging and prognosis. However, the effects of LeY on ovarian cancer are not yet clear. Previously, we transfected the ovarian cancer cell line RMG-I with the α1,2-fucosyltransferase gene to obtain stable transfectants, RMG-I-H, that highly express LeY. In the present study, we examined the proliferation, tumorigenesis, adhesion and invasion of the cell lines with treatment of LeY monoclonal antibody (mAb). Additionally, we examined the expression of TGF-β1, VEGF and b-FGF in xenograft tumors. The results showed that the proliferation and adhesion in vitro were significantly inhibited by treatment of RMG-I-H cells with LeY mAb. When subcutaneously inoculated in nude mice, RMG-I-H cells produced large tumors, while mock-transfected cells RMG-I-C and the parental cells RMG-I produced small tumors. Moreover, the tumor formation by RMG-I-H cells was inhibited by preincubating the cells with LeY mAb. Notably, the expression of TGF-β1, VEGF and b-FGF all increased in RMG-I-H cells. In conclusion, LeY plays an important role in promoting cell proliferation, tumorigenecity and adhesion, and these effects may be related to increased levels of growth factors. The LeY antibody shows potential application in the treatment of LeY-positive tumors

    Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression

    Full text link
    Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4+ T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R0. If R0 1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83423/1/wang2002.pd

    Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor's pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells.</p> <p>Methods</p> <p>We constructed a plasmid encoding α1,2-fucosyltransferase (α1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after α-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.</p> <p>Results</p> <p>Our results showed that the levels of α1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of α-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of α1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002.</p> <p>Conclusions</p> <p>Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.</p

    Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine reproductive and respiratory syndrome virus (PRRSV) and <it>Streptococcus suis </it>are common pathogens in pigs. In samples collected during the porcine high fever syndrome (PHFS) outbreak in many parts of China, PRRSV and <it>S. suis </it>serotype 7 (SS7) have always been isolated together. To determine whether PRRSV-SS7 coinfection was the cause of the PHFS outbreak, we evaluated the pathogenicity of PRRSV and/or SS7 in a pig model of single and mixed infection.</p> <p>Results</p> <p>Respiratory disease, diarrhea, and anorexia were observed in all infected pigs. Signs of central nervous system (CNS) disease were observed in the highly pathogenic PRRSV (HP-PRRSV)-infected pigs (4/12) and the coinfected pigs (8/10); however, the symptoms of the coinfected pigs were clearly more severe than those of the HP-PRRSV-infected pigs. The mortality rate was significantly higher in the coinfected pigs (8/10) than in the HP-PRRSV- (2/12) and SS7-infected pigs (0/10). The deceased pigs of the coinfected group had symptoms typical of PHFS, such as high fever, anorexia, and red coloration of the ears and the body. The isolation rates of HP-PRRSV and SS7 were higher and the lesion severity was greater in the coinfected pigs than in monoinfected pigs.</p> <p>Conclusion</p> <p>HP-PRRSV infection increased susceptibility to SS7 infection, and coinfection of HP-PRRSV with SS7 significantly increased the pathogenicity of SS7 to pigs.</p

    Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.)

    Get PDF
    DREB (dehydration-responsive element-binding protein) transcription factors have important roles in the stress-related regulation network in plants. A DREB orthologue, GmDREB3, belonging to the A-5 subgroup of the DREB subfamily, was isolated from soybean using the RACE (rapid amplification of cDNA ends) method. Northern blot analysis showed that expression of GmDREB3 in soybean seedlings was induced following cold stress treatment for 0.5 h and was not detected after 3 h. However, it was not induced by drought and high salt stresses or by abscisic acid (ABA) treatment. This response was similar to those of members in the A-1 subgroup and different from those of other members in the A-5 subgroup, suggesting that the GmDREB3 gene was involved in an ABA-independent cold stress-responsive signal pathway. Furthermore, analysis of the GmDREB3 promoter elucidated its cold-induced modulation. A promoter fragment containing bases −1058 to −664 was involved in response to cold stress, and its effect was detected for 1 h after treatment, but a transcriptional repressor appeared to impair this response by binding to a cis-element in the region −1403 to −1058 at 24 h after the beginning of cold stress. Moreover, the GmDREB3 protein could specifically bind to the DRE element in vitro, and activated expression of downstream reporter genes in yeast cells. In addition, overexpression of GmDREB3 enhanced tolerance to cold, drought, and high salt stresses in transgenic Arabidopsis. Physiological analyses indicated that the fresh weight and osmolality of GmDREB3 transgenic Arabidopsis under cold stress were higher than those of wild-type controls. GmDREB3 transgenic tobacco accumulated higher levels of free proline under drought stress and retained higher leaf chlorophyll levels under high salt stress than wild-type tobacco. In addition, constitutive expression of GmDREB3 in transgenic Arabidopsis caused growth retardation, whereas its expression under control of the stress-inducible Rd29A promoter minimized negative effects on plant growth under normal growth conditions, indicating that a combination of the Rd29A promoter and GmDREB3 might be useful for improving tolerance to environmental stresses in crop plants

    A Method for Generation Phage Cocktail with Great Therapeutic Potential

    Get PDF
    Background: Bacteriophage could be an alternative to conventional antibiotic therapy against multidrug-resistant bacteria. However, the emergence of resistant variants after phage treatment limited its therapeutic application. Methodology/Principal Findings: In this study, an approach, named ‘‘Step-by-Step’ ’ (SBS), has been established. This method takes advantage of the occurrence of phage-resistant bacteria variants and ensures that phages lytic for wild-type strain and its phage-resistant variants are selected. A phage cocktail lytic for Klebsiella pneumoniae was established by the SBS method. This phage cocktail consisted of three phages (GH-K1, GH-K2 and GH-K3) which have different but overlapping host strains. Several phage-resistant variants of Klebsiella pneumoniae were isolated after different phages treatments. The virulence of these variants was much weaker [minimal lethal doses (MLD).1.3610 9 cfu/mouse] than that of wild-type K7 countpart (MLD = 2.5610 3 cfu/mouse). Compared with any single phage, the phage cocktail significantly reduced the mutation frequency of Klebsiella pneumoniae and effectively rescued Klebsiella pneumoniae bacteremia in a murine K7 strain challenge model. The minimal protective dose (MPD) of the phage cocktail which was sufficient to protect bacteremic mice from lethal K7 infection was only 3.0610 4 pfu, significantly smaller (p,0.01) than that of single monophage. Moreover, a delayed administration of this phage cocktail was still effective in protection against K7 challenge. Conclusions/Significance: Our data showed that the phage cocktail was more effective in reducing bacterial mutatio
    corecore