4,025 research outputs found
Random Logic Programs: Linear Model
This paper proposes a model, the linear model, for randomly generating logic
programs with low density of rules and investigates statistical properties of
such random logic programs. It is mathematically shown that the average number
of answer sets for a random program converges to a constant when the number of
atoms approaches infinity. Several experimental results are also reported,
which justify the suitability of the linear model. It is also experimentally
shown that, under this model, the size distribution of answer sets for random
programs tends to a normal distribution when the number of atoms is
sufficiently large.Comment: 33 pages. To appear in: Theory and Practice of Logic Programmin
Preferential Multi-Context Systems
Multi-context systems (MCS) presented by Brewka and Eiter can be considered
as a promising way to interlink decentralized and heterogeneous knowledge
contexts. In this paper, we propose preferential multi-context systems (PMCS),
which provide a framework for incorporating a total preorder relation over
contexts in a multi-context system. In a given PMCS, its contexts are divided
into several parts according to the total preorder relation over them,
moreover, only information flows from a context to ones of the same part or
less preferred parts are allowed to occur. As such, the first preferred
parts of an PMCS always fully capture the information exchange between contexts
of these parts, and then compose another meaningful PMCS, termed the
-section of that PMCS. We generalize the equilibrium semantics for an MCS to
the (maximal) -equilibrium which represents belief states at least
acceptable for the -section of an PMCS. We also investigate inconsistency
analysis in PMCS and related computational complexity issues
Future Frame Prediction for Anomaly Detection -- A New Baseline
Anomaly detection in videos refers to the identification of events that do
not conform to expected behavior. However, almost all existing methods tackle
the problem by minimizing the reconstruction errors of training data, which
cannot guarantee a larger reconstruction error for an abnormal event. In this
paper, we propose to tackle the anomaly detection problem within a video
prediction framework. To the best of our knowledge, this is the first work that
leverages the difference between a predicted future frame and its ground truth
to detect an abnormal event. To predict a future frame with higher quality for
normal events, other than the commonly used appearance (spatial) constraints on
intensity and gradient, we also introduce a motion (temporal) constraint in
video prediction by enforcing the optical flow between predicted frames and
ground truth frames to be consistent, and this is the first work that
introduces a temporal constraint into the video prediction task. Such spatial
and motion constraints facilitate the future frame prediction for normal
events, and consequently facilitate to identify those abnormal events that do
not conform the expectation. Extensive experiments on both a toy dataset and
some publicly available datasets validate the effectiveness of our method in
terms of robustness to the uncertainty in normal events and the sensitivity to
abnormal events.Comment: IEEE Conference on Computer Vision and Pattern Recognition 201
- …