22 research outputs found

    Comparative efficacy of a secretory phospholipase A2 inhibitor with conventional anti-inflammatory agents in a rat model of antigen-induced arthritis

    Get PDF
    INTRODUCTION: Previously, secretory phospholipase A(2 )(sPLA(2)) inhibition has been used as an adjunct to conventional rheumatoid arthritis therapy in human clinical trials without significant improvement of arthritic pathology. In this study, we compared the efficacy of a potent and orally active group IIa secretory phospholipase A(2 )inhibitor (sPLA(2)I) to conventional anti-arthritic agents; infliximab, leflunomide and prednisolone, in a rat model of antigen-induced arthritis. METHODS: Initially, to establish efficacy and dose-response, rats were orally dosed with the sPLA(2)I (1 and 5 mg/kg) two days prior to arthritis induction, and then daily throughout the 14-day study period. In the second trial, rats were orally dosed with the sPLA(2)I (5 and 10 mg/kg/day) beginning two days after the induction of arthritis, at the peak of joint swelling. Separate groups of rats were also dosed with the tumour necrosis factor-alpha (TNF-α) inhibitor infliximab (single 3 mg/kg i.v. injection), leflunomide (10 mg/kg/day, oral) or prednisolone (1 mg/kg/day, oral) at this same time point and used as comparative treatments. RESULTS: In the pathology prevention trial, both 1 and 5 mg/kg dose groups of sPLA(2)I demonstrated a significant reduction in joint swelling and gait disturbances; however, only the higher 5 mg/kg dose resulted in significantly reduced histopathology scores. In the post-induction trial, rats dosed with sPLA(2)I showed a significant improvement in joint swelling and gait scoring, whereas none of the conventional therapeutics achieved a significant decrease in both of these two disease markers. Histopathological scoring at the end-point of the study demonstrated significantly reduced median scores in rats treated with 10 mg/kg sPLA(2)I and leflunomide. CONCLUSIONS: The results from this study suggest a pathogenic role for sPLA(2 )enzymes in this model of arthritis in rats, and the potential clinical utility of sPLA(2 )inhibition as a safer, and more effective, alternative to conventional anti-arthritic therapeutics

    EPHA2 Polymorphisms and Age-Related Cataract in India

    Get PDF
    Objective: We investigated whether previously reported single nucleotide polymorphisms (SNPs) of EPHA2 in European studies are associated with cataract in India. Methods: We carried out a population-based genetic association study. We enumerated randomly sampled villages in two areas of north and south India to identify people aged 40 and over. Participants attended a clinical examination including lens photography and provided a blood sample for genotyping. Lens images were graded by the Lens Opacification Classification System (LOCS III). Cataract was defined as a LOCS III grade of nuclear >= 4, cortical >= 3, posterior sub-capsular (PSC) >= 2, or dense opacities or aphakia/pseudophakia in either eye. We genotyped SNPs rs3754334, rs7543472 and rs11260867 on genomic DNA extracted from peripheral blood leukocytes using TaqMan assays in an ABI 7900 real-time PCR. We used logistic regression with robust standard errors to examine the association between cataract and the EPHA2 SNPs, adjusting for age, sex and location. Results: 7418 participants had data on at least one of the SNPs investigated. Genotype frequencies of controls were in Hardy-Weinberg Equilibrium (p > 0.05). There was no association of rs3754334 with cataract or type of cataract. Minor allele homozygous genotypes of rs7543472 and rs11260867 compared to the major homozygote genotype were associated with cortical cataract, Odds ratio (OR) = 1.8, 95% Confidence Interval (CI) (1.1, 3.1) p = 0.03 and 2.9 (1.2, 7.1) p = 0.01 respectively, and with PSC cataract, OR = 1.5 (1.1, 2.2) p = 0.02 and 1.8 (0.9, 3.6) p = 0.07 respectively. There was no consistent association of SNPs with nuclear cataract or a combined variable of any type of cataract including operated cataract. Conclusions: Our results in the Indian population agree with previous studies of the association of EPHA2 variants with cortical cataracts. We report new findings for the association with PSC which is particularly prevalent in Indians

    Targeting the RhoGEF βPIX/COOL-1 in Glioblastoma: Proof of Concept Studies

    Get PDF
    Glioblastoma (GBM), a highly invasive and vascular malignancy is shown to rapidly develop resistance and evolve to a more invasive phenotype following bevacizumab (Bev) therapy. Rho Guanine Nucleotide Exchange Factor proteins (RhoGEFs) are mediators of key components in Bev resistance pathways, GBM and Bev-induced invasion. To identify GEFs with enhanced mRNA expression in the leading edge of GBM tumours, a cohort of GEFs was assessed using a clinical dataset. The GEF βPix/COOL-1 was identified, and the functional effect of gene depletion assessed using 3D-boyden chamber, proliferation, and colony formation assays in GBM cells. Anti-angiogenic effects were assessed in endothelial cells using tube formation and wound healing assays. In vivo effects of βPix/COOL-1-siRNA delivered via RGD-Nanoparticle in combination with Bev was studied in an invasive model of GBM. We found that siRNA-mediated knockdown of βPix/COOL-1 in vitro decreased cell invasion, proliferation and increased apoptosis in GBM cell lines. Moreover βPix/COOL-1 mediated endothelial cell migration in vitro. Mice treated with βPix/COOL-1 siRNA-loaded RGD-Nanoparticle and Bev demonstrated a trend towards improved median survival compared with Bev monotherapy. Our hypothesis generating study suggests that the RhoGEF βPix/COOL-1 may represent a target of vulnerability in GBM, in particular to improve Bev efficacy

    When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All?

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone

    When RON MET TAM in mesothelioma: All druggable for one, and one drug for all?: Topic: Mesothelioma transitional (Conference Abstract)

    No full text
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer associated with exposure to asbestos. Untreated, MPM has a median survival time of 6 months, and most patients die within 24 months of diagnosis. Therefore an urgent need exists to identify new therapies for treating MPM patients. The potential for therapeutically targeting receptor tyrosine kinase (RTK) signalling networks is emerging as a critical mechanism in ‘oncogene addicted’ cancer, with RTK inhibitors evolving as areas of considerable importance in cancer therapy. Furthermore, RTK hetero-dimerization has emerged as a key element in the development of resistance to cancer therapy. As such TKIs which target several RTKs may have superior efficacy compared with TKIs targeting individual RTKs. We and others have identified c-MET, RON, Axl and Tyro3 as RTKs frequently overexpressed and activated in MPM, making these attractive candidate therapeutic targets. A number of orally bioavailable small molecule inhibitors have been developed which can target these receptors. LCRF0004 specifically targets RON, whereas ASLAN002 (BMS-777607) or Merestinib (LY2801653) are orally bioavailable small molecule inhibitors which inhibit c-MET, RON, Axl and Tyro3 at nanomolar concentrations. These drugs may therefore have applicability in the treatment/management of MPM

    Refining glioblastoma surgery through the use of intra-operative fluorescence imaging agents

    No full text
    Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives. </p

    When RON MET TAM in mesothelioma: All druggable for one, and one drug for all?

    No full text
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone

    Durability of cell line xenograft resection models to interrogate tumor micro-environment targeting agents.

    No full text
    Angiogenesis is a key tumor microenvironment (TME) event underpinning tumor growth and metastasis. Nevertheless, the relatively poor performance of anti-angiogenic therapies in clinical trials compared to pre-clinical studies implies that classical subcutaneous xenograft models have limited predictive potential in this setting. To address this issue, we established orthotopic surgical resection models of breast cancer, which replicate the phenotype of clinical post-resection micro-metastasis. To demonstrate the power and precision of these models, we recapitulated the BETH adjuvant trial (NCT00625898) where the addition of bevacizumab (BVZ) to chemotherapy plus trastuzumab (Trast) failed to provide additional benefit. SCID mice were orthotopically implanted with bioluminescent Her2+ MDA-MB-231 or HCC1954 cells and tumors resected c.5 weeks later. Following resection, mice were treated with 10mg/kg Trast +5mg/kg paclitaxel (PAC) IP once weekly for 6 cycles +/− weekly BVZ (5mg/kg IP). Metastasis was monitored by imaging. Using these models our data confrms that the addition of the anti-angiogenic antibody BVZ to adjuvant Trast+chemotherapy provides no additional beneft compared with Trast+chemotherapy alone. Previous studies using non-resection subcutaneously engrafted xenografts failed to predict this outcome. Our results provide compelling evidence for the utility of cell line xenograft resection models to predict clinical outcome for TME targeting agents.</p
    corecore