5,104 research outputs found

    Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems

    Get PDF
    The side-mode suppression ratio (SMSR) of self-seeded gain-switched optical pulses is shown to be an extremely important factor for the use of these pulses in optical communications systems. Experiments carried out involving pulse propagation through dispersion-shifted fiber and a bandpass optical filter demonstrate that, for SMSR values of less than 25 dB, the buildup of noise due to the mode partition effect may render these pulses unsuitable for use in optical communications system

    Generation of widely tunable picosecond pulses with large SMSR by externally injecting a gain-switched dual laser source

    Get PDF
    The authors demonstrate a procedure of generating picosecond optical pulses that are tunable over a wide wavelength range (65 nm) and have very high spectral purity side-mode suppression ratio [(SMSR)>60 dB]. The large tuning range is obtained by employing external injection into a gain-switched source containing two Fabry-Pe/spl acute/rot lasers. The use of a widely tunable Bragg grating at the output improves the SMSR such that it exceeds 60 dB over the entire tuning range

    Effects of weak input side mode suppression ratio and output filtration on the intensity noise of a self-seeded gain switched optical pulses at 2.5 GHz

    Get PDF
    Mode partition noise is shown to be a cause for concern in terms of the intensity noise induced on a self-seeded gain-switched pulse when filtering is used to increase the side mode suppression ratio (SMSR) of the output signal to >30 dB. The inherent SMSR of a self-seeded gain switched pulse is revealed to be a vital parameter especially when output filtration is used. Our results portray the fact that such a procedure would lead to an introduction of noise on the SSGS pulses if the inherent SMSR is weak, and may ultimately determine whether or not a source is suitable for use in WDM or OTDM optical communication networks

    Effects of intermodulation distortion on the performance of a hybrid radio/fiber system employing a self-pulsating laser diode transmitter

    Get PDF
    A self-pulsating laser is used to generate a multicarrier (five radio frequency (RF) channels) microwave optical signal for use in a hybrid radio/fiber system. The self-pulsation is achieved by external light injection into the laser diode. By varying the RF channel spacing, we have been able to estimate the degradation in system performance due to intermodulation distortion (caused by the nonlinear dynamic response of the laser). The power penalty on the central RF channel is found to be 3.2 dB for operation at the RF band around the laser self-pulsation frequency of 18.5 GHz. We have also characterized the performance of the multicarrier hybrid radio/fiber system in the frequency band corresponding to the inherent relaxation frequency of the laser

    Continuous repetition rate tuning with timing window independent self-seeding of a gain-switched Fabry-PÉrot Laser

    Get PDF
    In this work, we propose a novel self-seeding technique that yields timing window independent operation allowing continuous repetition rate tuning of the self-seeded gain-switched (SSGS) laser. This is achieved by employing a highly linearly chirped fiber Bragg grating (LC FBG) as a wavelength selective element. The reflected gain-switched pulses are dispersed to such an extent, that temporal overlap occurs between them. This overlap creates a pseudo continues wave like signal that is re-injected into the gain-switched laser

    Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection

    Get PDF
    A directly modulated laser diode with external light injection is used to generate microwave optical signals for a hybrid radio/fiber system. The external light injection greatly enhances the frequency response of the laser, and thus, significantly improves the overall performance of the hybrid system. Experimental results show a 14-dB improvement in system performance for the externally injected laser in a hybrid radio/fiber communication link used for distributing 155-Mb/s data signal

    Quantum Circuit Cosmology: The Expansion of the Universe Since the First Qubit

    Get PDF
    We consider cosmological evolution from the perspective of quantum information. We present a quantum circuit model for the expansion of a comoving region of space, in which initially-unentangled ancilla qubits become entangled as expansion proceeds. We apply this model to the comoving region that now coincides with our Hubble volume, taking the number of entangled degrees of freedom in this region to be proportional to the de Sitter entropy. The quantum circuit model is applicable for at most 140 ee-folds of inflationary and post-inflationary expansion: we argue that no geometric description was possible before the time t1t_1 when our comoving region was one Planck length across, and contained one pair of entangled degrees of freedom. This approach could provide a framework for modeling the initial state of inflationary perturbations.Comment: v2, minor correction

    Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system

    Get PDF
    A radio over fiber distribution system incorporating both sub-carrier multiplexing (SCM) and wavelength division multiplexing (WDM) technologies is presented. The SCM signal contains five 155-Mbit/s data channels, centered around 18.5 GHz with 450 MHz spacing. This signal is directly modulated onto three high-speed lasers with emission frequencies spaced by 50 GHz. Bragg filters are employed at the receiver base-station in order to both demultiplex the required optical channel and ensure that the detected signal is single sideband (in order to overcome dispersion limitations on the link). Our results show negligible degradation in system performance for the demultiplexing of the WDM signal compared with the back-to-back performance curves

    Development of highly flexible broadband networks incorporating wavelength division multiplexing and sub-carrier division multiplexing in a hybrid radio/fiber distribution system

    Get PDF
    A radio over fiber distribution system incorporating both SCM and WDM technologies is presented. The SCM signal contains five 155 Mbit/s data channels, centered around 18.5 GHz with 450 MHz spacing. This signal is directly modulated onto three high-speed lasers with emission frequencies spaced by 50 GHz. Bragg filters are employed at the receiver base station in order both to demultiplex the required optical channel, and to ensure that the detected signal is single side band (in order to overcome dispersion limitations on the link). Our results show negligible degradation in system performance for the demultiplexing of the WDM signal compared with the back-to-back performance curves
    corecore