9 research outputs found
Effect of Added Pectin and Microcrystalline Cellulose (MCC) on Capsule Shell Quality
The objective of this study was analyzing the effect of the added pectin and microcrystalline cellulose (mcc) on the capsule shell quality. The method used in this study was by combining the pectin and microcrystalline cellulose composition on capsule shell manufacture. The formulation used to test the capsule shells was through 1 gram, 2 gram, 3 gram of pectin; 0 gram and 1.5 gram of microcrystalline cellulose; 1 gram of glycerol; and, 1 gram of carrageenan. The experiment tests used in this study were through the organoleptic test, the capsule weight test, the moisture test, the pH test, the dissolution time test, and the capsule-length test. The result of this study showed that the recommended formulation used to manufacture the hard capsule shells was through 3 gram pectin and 1.5 gram microcrystalline cellulose. The required temperature to heat the pectin and microcrystalline cellulose was at 90oC with 2.5-hour heating time. The characteristics of the manufactured capsule shells were that it had a turbid colour and irregular shape, the surface was not smooth and the disintegration time was 9 minutes and 21 seconds.
Keywords: Capsule Shell, Microcrystalline Cellulose, Pectin, Variation, Testin
Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler
This study evaluated the feasibility of bioplastics production by various ratio of sorghum starch and cellulose from red seaweed Eucheuma spinossum, and the use of glycerol as plasticizer and sorghum stalks as filler. Solid-liquid matrix transition should be far over the operating temperature of gelatinization and extracted at 95oC in order to avoid the loss of conductivity. The analyzed variables were starch and cellulose seaweed Eucheuma spinossum and the addition of variation of filler. Sorghum stalk could be expected to affect the mechanical and physical properties of bioplastics. A thin sheet of plastic (plastic film) was obtained as a result that have been tested mechanically to obtain the best condition for the formulation of starch-cellulose 8.5:1.5 (g/g). From the result of morphological studies, the fillers in the mixture composites were more randomly in each product and the addition of filler can increase mechanical properties of bioplastics. Chemical modiļ¬cation had a major effect on the mechanical properties. The phenomena of degradation and thermoplasticization were visible at chemical changes that can be observed in FTIR spectrum test results
Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu
Salah satu hasil pertanian terbesar di Indonesia adalah tanaman ubi kayu. Selama ini batang ubi kayu tersedia dalam jumlah yang cukup besar namun belum dimanfaatkan secara optimal. Batang ubi kayu memiliki kandungan lignoselulosa yaitu selulosa 39,29%, hemiselulosa 24,34%, dan lignin 13,42%. Penelitian ini bertujuan untuk memanfaatkan limbah batang ubi kayu yang akan dijadikan sebagai bahan baku pembuatan selulosa asetat. Proses pembuatan selulosa asetat dilakukan dalam 2 tahap yaitu tahap isolasi selulosa (proses pretreatment, delignifikasi, dan bleaching) dan tahap sintesis selulosa asetat. Pelarut yang digunakan pada proses pretreatment yaitu asam fosfat, asam asetat, dan asam klorida. Hasil penelitian menunjukkan bahwa larutan asam fosfat 3% menghasilkan densitas terkecil yaitu 0,833 g/mL yang menunjukan bahwa telah terjadinya swelling. Pada proses delignifikasi digunakan variasi waktu dan rasio bahan terhadap pelarut. Kadar selulosa terbesar yang diperoleh yaitu 56,92% dengan waktu pemasakan 2 jam dan rasio sampel terhadap pelarut 1:12 (v/v). Identifikasi gugus fungsi FTIR terhadap selulosa asetat menunjukkan adanya serapan gugus karbonil (C=O) dan gugus ester (C-O), masing-masing terlihat pada bilangan gelombang 1738,47 cm-1 dan 1224,39 cm-1. Kadar asetil selulosa asetat yang dihasilkan sebesar 41,01% dan termasuk jenis selulosa diasetat yang dapat dimanfaatkan lebih lanjut dalam pembuatan membran, film topografi, dan benang
Produksi Gula Reduksi dari Batang Ubi Kayu dengan Hidrolisis Menggunakan Asam Encer dan Induksi Medan Elektromagnetik
AbstrakĀ Batang ubi kayu yang dihasilkan dari limbah pertanian merupakan biomassa lignoselulosa dengan komposisi selulosa 39,30%, hemiselulosa 24,34% dan lignin 13,42%. Penelitian ini bertujuan untuk mengkonversi limbah batang ubi kayu menjadi gula reduksi. Proses konversi lignoselulosa menjadi gula reduksi secara hidrolisis umumnya dilakukan pada temperatur dan tekanan tinggi dengan menggunakan katalis asam. Pada penelitian ini, digunakan induksi medan elektromagnetik pada proses hidrolisis lignoselulosa dengan menggunakan asam encer sehingga proses hidrolisis dapat berlangsung pada kondisi yang rendah. Hasil penelitian menunjukkan komponen gula reduksi yang dihasilkan berupa xylosa, arabinosa dan glukosa. Kadar gula reduksi sebesar 10 mg/ml menggunakan pelarut HCl 5%, induksi medan elektromagnetik sebesar 7,18Ć10-4 Tesla, pada temperature 100Ā°C selama 60 menit. Hasil ini sebanding dengan penelitian serupa yang berlangsung pada suhu lebih tinggi dengan menggunakan asam kuat.Ā Parameter operasi yang lunak dapat mengatasi degradasi gula reduksi menjadi komponen HMF dan furfural, sehingga proses hidrolisis menjadi lebih efektif.
Applied of Synthesis Furfural Based on Cassava Stems (Manihot utilissima) As Fuel Additive to Gasoline
Biofuel is an option to reduce CO2 generated by vehicles. In this study, synthetic crude furfural from cassava stems was blended as fuel additive to gasoline (Pertalite) and then induced by electromagnetic field. Analysis were carried out on engine performance and exhaust emissions produced by Kohler engines. Variations formed by samples crude furfural and commercial furfural (C5H4O2), then time variations of electromagnetic induction for 0 and 30 minutes. The blending composition of gasoline and furfural in a mixture of 1,500 ml fuel is 96% : 4%. The best results from increasing torque, cranking power and saving fuel consumption were obtained from variations in the use of crude furfural additives induced by electromagnetic fields (CFE). Exhaust emissions produced by pure Pertalite are still lower than fuels with furfural additives. The content of water and impurities in crude furfural causes the additive unmixed with Pertalite which is non-polar and hydrophobic
Pengaruh Suhu Dan Waktu Pretreatment Alkali Pada Isolasi Selulosa Limbah Batang Pisang
Limbah batang pisang yang dihasilkan dari perkebunan pisang merupakan biomassa yangĀ kandungan selulosanya dapat diisolasi dan dimanfaatkan sebagai bahan baku pembuatan serat selulosa. Penelitian ini bertujuan untuk meningkatkan yield selulosa dari batang pisang dengan perlakuan pretreatment alkali. Pelarut alkali yang digunakan adalah NaOH 1% dengan variabel operasi berupa temperatur 60, 70, dan 80Ā°C dan waktu 60, 90, dan 120 menit. Proses delignifikasi dilakukan dengan menggunakan Na2SO3 20% dan H2O2 2% sebagai agen pemutih. Dari hasil analisis kadar lignoselulosa, pretreatment yang menghasilkan rendemen selulosa terbesar yaitu 51,64% pada kondisi operasi suhu 80Ā°C selamaĀ 60 menit. Dari hasil Uji FTIR dan SEM dapat diketahui bahwa isolasi selulosa dari batang pisang dengan pretreatment alkali memperlihatkan keberadaan gugus fungsi utama penyusun selulosa serta struktur permukaan serat selulosa
Preparation and Characterization of Nanocrystalline Cellulose from Cassava Stem Wastes by Electromagnetic Induction
Cassava stems were one of the largest agricultural by products in Indonesia, especially in Lampung Province. It is known that cassava stems have a fairly high lignocellulose content, especially cellulose which reaches 39.29%. The high cellulose content in cassava stems has great potential to be used as raw material for Nanocrystalline Cellulose (NCC). The preparation of nanocrystalline cellulose consists of four main stages, namely: pre-hydrolysis, delignification, bleaching, and acid hydrolysis. The pre-hydrolysis stage was carried out by boiling a solution of CH3COOH and cassava stem powder for 60 minutes at a temperature of 105oC. Cassava stem powder was then delignified using a 25% NaOH solution heated to a temperature of 105oC for 1 hour. The bleaching stage used a 3.5% NaOCl solution at a temperature of 50oC for 60 minutes and was carried out twice. The last step is acid hydrolysis using 2.5N HCl solution for 15 minutes at a temperature of 105oC, then the electromagnetic induction treatment is varied with temperature variations of 30oC, 50oC, and 70oC for 60 minutes. The prepared nanocrystalline cellulose were tested for lignocellulose, XRD and PSA. From the test results, the best variation of nanocrystal cellulose preparation was acid hydrolysis treatment with 70oC electromagnetic induction for 60 minutes, namely an increase in the percentage of cellulose 62.93%, crystallinity 90.68%, and an average particle size of 18.04Āµm with some particles measuring nanometers. From the results of the research, it was concluded that electromagnetic induction increased crystallinity and decreased the size of nanocrystalline cellulose
Aplikasi Mikrofibril Selulosa Dari Batang Sorgum Sebagai Pengisi Pada Sintesis Film Bioplastik
Ā Pada penelitian ini telah disintesis bioplastik dengan penambahan mikrokristalin selulosa dari batang sorgumĀ sebagai pengisi. denganĀ formulasi pati sorgum-gelatin dan Ā pemplastis gliserol. Formulasi pati sorgum-gelatin yang digunakan yaitu 10:0 ; 9,5:0,5 ; 8,5:1,5 ; 7,5:2,5 ; 6,5:3,5 dan 5,5:4,5 (gr/gr). Penambahan mikrokristalin selulosa sebesar 0 %, 1%, 2%,Ā dan 3%Ā dari total berat kering campuran pati dan gelatin. Suhu gelatinisasi yang digunakan pada 95oC dan konsentrasi gliserol 10% berat berdasarkan persen berat kering dari total berat campuran 10 gram pati dan gelatin. Kecepatan pengadukan sebesar 375 rpmĀ dengan temperatur pengeringan yang digunakanĀ adalah 60oC selama 11 jam. Ukuran granula pati yang digunakan yaitu lolos ayakan 60 mikron dan waktu pengadukan selama 35 menit. Mikrokristalin selulosa sebagai pengisi dihasilkan dengan metode alkali-mekanik dan berukuran 8 mikron. Penggunaan mikrokristalin selulosa dapat meningkatkan kuat tarik sebesar 3,65-10,47 MPa, dan menurunkan perpanjangan putus sebesar 2,14-14,32%.Ā
Synthesis of Biofoam Based on Starch Mixture of Cassava Peel and Kepok Banana Peel with Chitosan Additive to Improve Mechanical and Physical Characteristics
Biodegradable foam(biofoam) is a type of bioplastic that is used as an alternative packaging to replace styrofoam which is safe and environmentally friendly. This study aims to determine the characteristics of biofoam made from cassava peel starch (A) and banana peel starch (B), as well as the effect of adding chitosan to the physical, mechanical, and biodegradation properties of the resulting biofoam. In the manufacture of biofoam, the variation of the A:B ratio used is 1:0; 3:2; 1:1 (%w/w). While the chitosan content added was 0%, 15%, and 30% by weight of starch and blowing agent NaHCO3 with a content of 12% by weight of starch. The production of biofoam was carried out using the thermopressing method with a printing temperature of 125Ā°C and a printing time of 7 minutes. The results of biofoam were characterized by density, water absorption, compressive strength, biodegradation, and FTIR functional groups. Based on the research results, it is known that biofoam is close to commercial biofoam standards, namely biofoam with an A:B ratio of 3:2 and the addition of 15% chitosan with a density value of 0.560 g/cm3, the water absorption capacity of 33.68%, compressive strength value of 5, 05 MPa, and the decomposition power of 17.44%. These variations have functional groups NāH, OāH, CāH, C=O, CāN, and CāO