132 research outputs found
Effects of Returning Straw and Milk Vetch on Rice Growth and Greenhouse Gas Emissions
The effects of different nitrogen application levels on rice yield and greenhouse gas (NO2, CH4) emissions from rice fields under the combined action of straw and milk vetch. Two treatments were set up in the main area of this experiment: R0 (no straw returned to the field, 0); R1 (amount of straw returned to the field under normal conditions, 6000 kg·hm-2). Before turning the straw back into the field, use a circular knife to cut the straw into 10~13 cm.And 3 kinds of nitrogen application treatments in the sub-district: N1 (no nitrogen application, 0), N2 (nitrogen application, 15 kg·hm-2), N3 (nitrogen application, 30 kg·hm-2), two-factor cross-combination,and a non-nitrogen control CK, total of 7 treatments. The results showed that in 2017, early rice R1N2 treatment increased the most obvious yield, which was 32.44% higher than CK, and late rice R1N1 treatment increased the most significantly, which was 17.91% higher than CK. CH4 emission is positively correlated with the straw returned to the field. N2O is the opposite. The N2O emission flux was highest in the treatment of R1N3, and the CH4 emission flux was the highest in the treatment of R1N2
Compound Prototype Matching for Few-shot Action Recognition
Few-shot action recognition aims to recognize novel action classes using only
a small number of labeled training samples. In this work, we propose a novel
approach that first summarizes each video into compound prototypes consisting
of a group of global prototypes and a group of focused prototypes, and then
compares video similarity based on the prototypes. Each global prototype is
encouraged to summarize a specific aspect from the entire video, for example,
the start/evolution of the action. Since no clear annotation is provided for
the global prototypes, we use a group of focused prototypes to focus on certain
timestamps in the video. We compare video similarity by matching the compound
prototypes between the support and query videos. The global prototypes are
directly matched to compare videos from the same perspective, for example, to
compare whether two actions start similarly. For the focused prototypes, since
actions have various temporal variations in the videos, we apply bipartite
matching to allow the comparison of actions with different temporal positions
and shifts. Experiments demonstrate that our proposed method achieves
state-of-the-art results on multiple benchmarks.Comment: ECCV 202
Apoptosis of supraoptic AVP neurons is involved in the development of central diabetes insipidus after hypophysectomy in rats
<p>Abstract</p> <p>Background</p> <p>It has been reported that various types of axonal injury of hypothalamo-neurohypophyseal tract can result in degeneration of the magnocellular neurons (MCNs) in hypothalamus and development of central diabetes insipidus (CDI). However, the mechanism of the degeneration and death of MCNs after hypophysectomy in vivo is still unclear. This present study was aimed to disclose it and to figure out the dynamic change of central diabetes insipidus after hypophysectomy.</p> <p>Results</p> <p>The analysis on the dynamic change of daily water consumption (DWC), daily urine volume(DUV), specific gravity of urine(USG) and plasma vasopressin concentration showed that the change pattern of them was triphasic and neuron counting showed that the degeneration of vasopressin neurons began at 10 d, aggravated at 20 d and then stabilized at 30 d after hypophysectomy. There was marked upregulation of cleaved Caspase-3 expression of vasopressin neurons in hypophysectomy rats. A "ladder" pattern of migration of DNA internucleosomal fragments was detected and apoptotic ultrastructure was found in these neurons. There was time correlation among the occurrence of diabetes insipidus, the changes of plasma vasopressin concentration and the degeneration of vasopressin neurons after hypophysectomy.</p> <p>Conclusion</p> <p>This study firstly demonstrated that apoptosis was involved in degeneration of supraoptic vasopressin neurons after hypophysectomy in vivo and development of CDI. Our study on time course and correlations among water metabolism, degeneration and apoptosis of vasopressin neurons suggested that there should be an efficient therapeutic window in which irreversible CDI might be prevented by anti-apoptosis.</p
Characterization of physicochemical properties of ivy nanoparticles for cosmetic application
Background
Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability. Methods
This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles. Results
Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles. Conclusions
Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications.
doi:10.1186/1477-3155-11-
gga-mir-133a-3p Regulates Myoblasts Proliferation and Differentiation by Targeting PRRX1
Non-coding RNAs play a regulatory role in the growth and development of skeletal muscle. Our previous study suggested that gga-mir-133a-3p was a potential candidate for regulating myoblast proliferation and differentiation in skeletal muscle. The purpose of our study was to reveal the regulatory mechanism of gga-mir-133a-3p in the proliferation and differentiation of chicken myoblasts. Through the detection of cell proliferation activity, cell cycle progression and EdU, we found that gga-mir-133a-3p can significantly inhibit the proliferation of myoblasts. In the process of myogenic differentiation, gga-mir-133a-3p is up-regulated, while gga-mir-133a-3p can significantly promote the up-regulation of differentiation-related muscle-derived factors, indicating that gga-mir-133a-3p can promote the differentiation of myoblasts. Validation at the transcriptional level and protein level proved that gga-mir-133a-3p can inhibit the expression of PRRX1, and the dual-luciferase assay also showed their direct targeting relationship. Correspondingly, PRRX1 can significantly promote myoblast proliferation and inhibit myoblast differentiation. In our study, we confirmed that gga-mir-133a-3p participates in the regulation of proliferation and differentiation of myoblasts by targeting PRRX1
Effect of Chitosan Coating with Different Molecular Weights on the Storage Quality of Postharvest Passion Fruit (Passiflora edulis Sims)
To study the preservation effect of chitosan coating with different molecular weights on postharvest passion fruit, the "Qinmi No.9" was coated with chitosan of molecular weights of 30, 50, 100, 150 and 200 kDa (1.5%, w/v) to determine the quality of passion fruit during storage. The results showed that chitosan coating with different molecular weights was able to delay the shrinkage and yellowing, reduce the weight loss rate and inhibit the decay of passion fruit. Moreover, chitosan with a larger molecular weight was more conducive to delaying the ripening and senescence of passion fruit, as well as reducing shrinkage, and decay. At the end of storage, the weight loss of fruits coated with 200 kDa chitosan was nearly 10% less than that coated with 30 kDa chitosan, and the fruits coated with 150 and 200 kDa chitosan did not decay. The lower molecular weight (30 and 50 kDa) and higher molecular weight (150 kDa) chitosan were more effective in inhibiting weight loss, total soluble solids and soluble sugar metabolism, and maintaining titratable acid, flavonoid and total phenol contents of fruit during storage. The chitosan with 150 kDa had the best effect in maintaining the vitamin C content, which was 1.12 times higher than the control group at the end of storage. In conclusion, chitosan with different molecular weights was effective to delay senescence, slow down water loss and shrink of passion fruit and maintain the quality, chitosan with 150 kDa was more suitable to maintain the quality of postharvest passion fruit
Effect of Extraction Temperature on the Functional and Structural Properties of Mullet Scale Gelatin
The functional property is an important factor to measure the quality of fish gelatin, which directly relates to the practical application range and value of fish gelatin. In order to explore the effect of extraction temperature on the functional properties of mullet scale gelatin, this study used a hot water extraction method. Different temperatures (60, 70, 80, 90, 100 ℃) were examined to assess their impact on the surface morphology of fish scales, fish scale gelatin yield, and functional properties (foaming capacity, emulsifying activity, gel strength, gel temperature, and melting temperature). Furthermore, the structural characteristics of fish scale gelatin were investigated using SDS-PAGE, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results showed that as the extraction temperature increased from 60 ℃ to 100 ℃, the damage to the surface of mullet scales became increasingly severe. The fish scale gelatin yield increased from 31.72% to 50.97%, foaming capacity improved from 23.33% to 73.33%, and emulsifying activity increased from 15.13 m2/g to 17.27 m2/g. However, gel strength, gel temperature, and melting temperature decreased from 677.82 g, 20.80 ℃, and 28.70 ℃ to 372.91 g, 15.80 ℃, and 23.90 ℃, respectively. Additionally, with the increase in extraction temperature, the characteristic bands of mullet scale gelatin α1, α2, and β chains on the electrophoresis pattern became increasingly blurred. The infrared spectroscopy results showed that the fish scale gelatin had characteristic absorption peaks (amide A, amide â… , amide â…¡, and amide â…¢), with the wavenumber of amide A first increasing and then decreasing. The scanning electron microscopy results showed that the tightness of the porous grid structure of the fish scale gelatin decreased. These findings provide a theoretical basis for the industrialization of mullet scale gelatin
Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress
IntroductionExogenous melatonin (MT) can promote horticultural crops growth under stress conditions.MethodsIn this study, the effects of exogenous MT on the accumulation of selenium (Se) in grape were studied under Se stress.Results and discussionUnder Se stress, exogenous MT increased the biomass, content of photosynthetic pigments and antioxidant enzyme activity of grapevines. Compared with Se treatment, MT increased the root biomass, shoot biomass, chlorophyll a content, chlorophyll b content, carotenoids, superoxide dismutase activity, and peroxidase activity by 18.11%, 7.71%, 25.70%, 25.00%, 25.93%, 5.73%, and 9.41%, respectively. Additionally, MT increased the contents of gibberellin, auxin, and MT in grapevines under Se stress, while it decreased the content of abscisic acid. MT increased the contents of total Se, organic Se and inorganic Se in grapevines. Compared with Se treatment, MT increased the contents of total Se in the roots and shoots by 48.82% and 135.66%, respectively. A transcriptome sequencing analysis revealed that MT primarily regulated the cellular, metabolic, and bioregulatory processes of grapevine under Se stress, and the differentially expressed genes (DEGs) were primarily enriched in pathways, such as aminoacyl-tRNA biosynthesis, spliceosome, and flavonoid biosynthesis. These involved nine DEGs and nine metabolic pathways in total. Moreover, a field experiment showed that MT increased the content of Se in grapes and improved their quality. Therefore, MT can alleviate the stress of Se in grapevines and promote their growth and the accumulation of Se
Precise and Rapid Validation of Candidate Gene by Allele Specific Knockout With CRISPR/Cas9 in Wild Mice
It is a tempting goal to identify causative genes underlying phenotypic differences among inbred strains of mice, which is a huge reservoir of genetic resources to understand mammalian pathophysiology. In particular, the wild-derived mouse strains harbor enormous genetic variations that have been acquired during evolutionary divergence over 100s of 1000s of years. However, validating the genetic variation in non-classical strains was extremely difficult, until the advent of CRISPR/Cas9 genome editing tools. In this study, we first describe a T cell phenotype in both wild-derived PWD/PhJ parental mice and F1 hybrids, from a cross to C57BL/6 (B6) mice, and we isolate a genetic locus on Chr2, using linkage mapping and chromosome substitution mice. Importantly, we validate the identification of the functional gene controlling this T cell phenotype, Cd44, by allele specific knockout of the PWD copy, leaving the B6 copy completely intact. Our experiments using F1 mice with a dominant phenotype, allowed rapid validation of candidate genes by designing sgRNA PAM sequences that only target the DNA of the PWD genome. We obtained 10 animals derived from B6 eggs fertilized with PWD sperm cells which were subjected to microinjection of CRISPR/Cas9 gene targeting machinery. In the newborns of F1 hybrids, 80% (n = 10) had allele specific knockout of the candidate gene Cd44 of PWD origin, and no mice showed mistargeting of the B6 copy. In the resultant allele-specific knockout F1 mice, we observe full recovery of T cell phenotype. Therefore, our study provided a precise and rapid approach to functionally validate genes that could facilitate gene discovery in classic mouse genetics. More importantly, as we succeeded in genetic manipulation of mice, allele specific knockout could provide the possibility to inactivate disease alleles while keeping the normal allele of the gene intact in human cells
- …