5,173 research outputs found

    A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    Get PDF

    Uncertainty-Aware Decision Transformer for Stochastic Driving Environments

    Full text link
    Offline Reinforcement Learning (RL) has emerged as a promising framework for learning policies without active interactions, making it especially appealing for autonomous driving tasks. Recent successes of Transformers inspire casting offline RL as sequence modeling, which performs well in long-horizon tasks. However, they are overly optimistic in stochastic environments with incorrect assumptions that the same goal can be consistently achieved by identical actions. In this paper, we introduce an UNcertainty-awaRE deciSion Transformer (UNREST) for planning in stochastic driving environments without introducing additional transition or complex generative models. Specifically, UNREST estimates state uncertainties by the conditional mutual information between transitions and returns, and segments sequences accordingly. Discovering the `uncertainty accumulation' and `temporal locality' properties of driving environments, UNREST replaces the global returns in decision transformers with less uncertain truncated returns, to learn from true outcomes of agent actions rather than environment transitions. We also dynamically evaluate environmental uncertainty during inference for cautious planning. Extensive experimental results demonstrate UNREST's superior performance in various driving scenarios and the power of our uncertainty estimation strategy

    Boosting Offline Reinforcement Learning for Autonomous Driving with Hierarchical Latent Skills

    Full text link
    Learning-based vehicle planning is receiving increasing attention with the emergence of diverse driving simulators and large-scale driving datasets. While offline reinforcement learning (RL) is well suited for these safety-critical tasks, it still struggles to plan over extended periods. In this work, we present a skill-based framework that enhances offline RL to overcome the long-horizon vehicle planning challenge. Specifically, we design a variational autoencoder (VAE) to learn skills from offline demonstrations. To mitigate posterior collapse of common VAEs, we introduce a two-branch sequence encoder to capture both discrete options and continuous variations of the complex driving skills. The final policy treats learned skills as actions and can be trained by any off-the-shelf offline RL algorithms. This facilitates a shift in focus from per-step actions to temporally extended skills, thereby enabling long-term reasoning into the future. Extensive results on CARLA prove that our model consistently outperforms strong baselines at both training and new scenarios. Additional visualizations and experiments demonstrate the interpretability and transferability of extracted skills

    Optimal pilot length for uplink massive MIMO systems with low-resolutions ADCs

    Get PDF
    corecore