7,068 research outputs found

    Multiphase transport model for heavy ion collisions at RHIC

    Get PDF
    Using a multiphase transport model (AMPT) with both partonic and hadronic interactions, we study the multiplicity and transverse momentum distributions of charged particles such as pions, kaons and protons in central Au+Au collisions at RHIC energies. Effects due to nuclear shadowing and jet quenching on these observables are also studied. We further show preliminary results on the production of multistrange baryons from the strangeness-exchange reactions during the hadronic stage of heavy ion collisions.Comment: 4 pages, 4 figures, espcrc1.sty included, presented at 15th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2001), Long Island, New York, January 200

    NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

    Full text link
    Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. Surrogate models are widely used in the field of simulation sciences to efficiently analyze computationally expensive simulation models. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation at multiple levels-of-detail as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process.Comment: Published at IEEE Transactions on Visualization and Computer Graphic

    Progress Towards Determining the Density Dependence of the Nuclear Symmetry Energy Using Heavy-Ion Reactions

    Full text link
    The latest development in determining the density dependence of the nuclear symmetry energy using heavy-ion collisions is reviewed. Within the IBUU04 version of an isospin- and momentum-dependent transport model using a modified Gogny effective interaction, recent experimental data from NSCL/MSU on isospin diffusion are found to be consistent with a nuclear symmetry energy of Esym(ρ)31.6(ρ/ρ0)1.05E_{sym}(\rho)\approx 31.6(\rho /\rho_{0})^{1.05} at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.Comment: 10 pages. Talk given at the 21st Winter Workshop on Nuclear Dynamics, Breckenridge, Colorado, USA, Feb. 5-12, 2005. To appear in Heavy-Ion Physics (2005

    Phi meson production in relativistic heavy ion collisions

    Get PDF
    Within a multiphase transport model we study phi meson production in relativistic heavy ion collisions from both superposition of initial multiple proton-proton interactions and the secondary collisions in the produced hadronic matter. The yield of phi mesons is then reconstructed from their decaying product of either the kaon-antikaon pairs or the dimuon pairs. Since the kaon-antikaon pairs at midrapidity with low transverse momenta are predominantly rescattered or absorbed in the hadronic medium, they can not be used to reconstruct the phi meson and lead thus to a smaller reconstructed phi meson yield than that reconstructed from the dimuon channel. With in-medium mass modifications of kaons and phi mesons, the phi yield from dimuons is further enhanced compared to that from the kaon-antikaon pairs. The model result is compared with the experimental data at the CERN/SPS and RHIC energies and its implications to quark-gluon plasma formation are discussed.Comment: Revised version, to appear in Nucl. Phys.

    Chiral condensate in nuclear matter with vacuum corrections

    Full text link
    Within the relativistic Hartree approach using a Lagrangian with density-dependent parameters respecting the chiral limit, it is found that the vacuum corrections from the nucleon Dirac sea soften the equation of state and favor the chiral symmetry restoration at high densities.Comment: 12 page
    corecore