4,855 research outputs found

    Representation Learning with Fine-grained Patterns

    Full text link
    With the development of computational power and techniques for data collection, deep learning demonstrates a superior performance over most of existing algorithms on benchmark data sets. Many efforts have been devoted to studying the mechanism of deep learning. One important observation is that deep learning can learn the discriminative patterns from raw materials directly in a task-dependent manner. Therefore, the representations obtained by deep learning outperform hand-crafted features significantly. However, those patterns are often learned from super-class labels due to a limited availability of fine-grained labels, while fine-grained patterns are desired in many real-world applications such as visual search in online shopping. To mitigate the challenge, we propose an algorithm to learn the fine-grained patterns sufficiently when only super-class labels are available. The effectiveness of our method can be guaranteed with the theoretical analysis. Extensive experiments on real-world data sets demonstrate that the proposed method can significantly improve the performance on target tasks corresponding to fine-grained classes, when only super-class information is available for training

    Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics

    Get PDF
    The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs
    corecore