2,691 research outputs found

    An improved plating assay for determination of phage titer

    Get PDF
    Phage is a virus that is parasitic on bacteria. It is very important to determine the titer of test sample in the study of phage. In this study, an improved plating assay was developed for detection of the number of recombinant phage Cap-T7 present in a test solution at a certain dilution point by counting the plaque forming units. The data demonstrated that the improved plating assay is fast, useful, and convenient for the determination of the phage titer in a sample.Keywords: Phage Cap-T7, detection method, plaque forming unit

    Stability analysis of different control modes of grid-connected converters under different grid conditions

    Get PDF
    With the sustained popularity of renewable energy generation, high penetration of variable energies, e.g., wind and solar, is reshaping the form of power systems and weakening the strength of the grid. The stability mechanism of the grid-connected converter in a weak power network, however, has yet to be evaluated. This paper establishes impedance and transient models for Grid-Following (GFL) as well as Grid-Forming (GFM) converters through the impedance analysis method and equal area criterion analysis method. The stability of these two control methods is then comprehensively studied under small and large interference with different grid conditions. The analytical results show that the GFM control is more stable against small disturbances in a weak network. In contrast, it is prone to a significant disturbance stability problem in the strong grid due to the large grid impedance. The GFL control is more suitable for a vigorous power grid, whereas introducing oscillation in a weak power grid due to its negative damping. Simulation experiments have verified the accuracy of the analytical results

    Identification of potential key genes associated with severe pneumonia using mRNA-seq

    Get PDF
    This study aimed to identify the potential key genes associated with severe pneumonia using mRNA-seq. Nine peripheral blood samples from patients with severe pneumonia alone (SP group, n=3) and severe pneumonia accompanied with chronic obstructive pulmonary disease (COPD; CSP group, n=3), as well as volunteers without pneumonia (control group, n=3) underwent mRNA-seq. Based on the sequencing data, differentially expressed genes (DEGs) were identified by Limma package. Following the pathway enrichment analysis of DEGs, the genes that were differentially expressed in the SP and CSP groups were selected for pathway enrichment analysis and coexpression analysis. In addition, potential genes related to pneumonia were identified based on the information in the Comparative Toxicogenomics Database. In total, 645 and 528 DEGs were identified in the SP and CSP groups, respectively, compared with the normal controls. Among these DEGs, 88 upregulated genes and 80 downregulated genes were common between the two groups. The functions of the common DEGs were similar to those of the DEGs in the SP group. In the coexpression network, the commonly downregulated genes (including ND1, ND3, ND4L, and ND6) and the commonly upregulated genes (including TSPY6P and CDY10P) exhibited a higher degree. In addition, 131 DEGs (including ND1, ND3, ND6, MIR449A and TAS2R43) were predicted to be potential pneumonia-related genes. In conclusion, the present study demonstrated that the common DEGs may be associated with the progression of severe pneumonia

    Diaqua­bis(2,2′-biimidazole)cobalt(II) 4,4′-dicarboxy­biphenyl-3,3′-di­car­boxylate

    Get PDF
    In the title compound, [Co(C6H6N4)2(H2O)2](C16H8O8), the CoII cation and the organic anion occupy different crystallographic inversion centres and, as a consequence, the asymmetric unit comprises two half-mol­ecules. The benzene groups are coplanar. The four coordinating N atoms of the two bidentate biimidazole ligands define the equatorial plane of a slightly distorted octa­hedral CoO2N4 geometry, and the water O atoms lie in the axial coordination sites. Translational (a,) and inversion-related symmetry operations link the Co complex mol­ecules and the negatively charged carboxyl­ate anions via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to (01). The coordinated water mol­ecules connect the sheets through O—H⋯O hydrogen bonds, forming a three-dimensional framework. In addition, two intra­molecular O—H⋯O hydrogen bonds are observed between the carboxyl and carboxyl­ate groups

    Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription regulator PhoP has been shown to be important for <it>Y. pestis </it>survival in macrophages and under various <it>in vitro </it>stresses. However, the mechanism by which PhoP promotes bacterial intracellular survival is not fully understood. Our previous microarray analysis suggested that PhoP governed a wide set of cellular pathways in <it>Y. pestis</it>. A series of biochemical experiments were done herein to study members of the PhoP regulon of <it>Y. pestis </it>biovar <it>Microtus</it>.</p> <p>Results</p> <p>By using gel mobility shift assay and quantitative RT-PCR, a total of 30 putative transcription units were characterized as direct PhoP targets. The primer extension assay was further used to determine the transcription start sites of 18 PhoP-dependent promoters and to localize the -10 and -35 elements. The DNase I footprinting was used to identify the PhoP-binding sites within 17 PhoP-dependent promoters, enabling the identification of PhoP box and matrix that both represented the conserved signals for PhoP recognition in <it>Y. pestis</it>. Data presented here providing a good basis for modeling PhoP-promoter DNA interactions that is crucial to the PhoP-mediated transcriptional regulation.</p> <p>Conclusion</p> <p>The proven direct PhoP targets include nine genes encoding regulators and 21 genes or operons with functions of detoxification, protection against DNA damages, resistance to antimicrobial peptides, and adaptation to magnesium limitation. We can presume that PhoP is a global regulator that controls a complex regulatory cascade by a mechanism of not only directly controlling the expression of specific genes, but also indirectly regulating various cellular pathways by acting on a set of dedicated regulators. These results help us gain insights into the PhoP-dependent mechanisms by which <it>Y. pestis </it>survives the antibacterial strategies employed by host macrophages.</p

    The incidence and mortality of lung cancer in China: a trend analysis and comparison with G20 based on the Global Burden of Disease Study 2019

    Get PDF
    BackgroundLung cancer is a significant health concern in China. There is limited available data of its burden and trends. This study aims to evaluate the trends of lung cancer across different age groups and genders in China and the Group of Twenty (G20) countries, explore the risk factors, and predict the future trends over a 20-year period.MethodsThe data were obtained from the GBD study 2019. The number of cases, age standardized rate (ASR), and average annual percentage changes (AAPC) were used to estimate the trend in lung cancer by age, gender, region and risk factor. The trend of lung cancer was predicted by autoregressive integrated moving average (ARIMA) model by the “xtarimau” command. The joinpoint regression analysis was conducted to identify periods with the highest changes in incidence and mortality. Additionally, the relationship between AAPCs and socio-demographic index (SDI) was explored.ResultsFrom 1990 to 2019, both the incidence and mortality of lung cancer in China and G20 significantly increased, with China experiencing a higher rate of increase. The years with the highest increase in incidence of lung cancer in China were 1998-2004 and 2007-2010. Among the G20 countries, the AAPC in incidence and mortality of lung cancer in the Republic of Korea was the highest, followed closely by China. Although India exhibited similarities, its AAPC in lung cancer incidence and mortality rates was lower than that of China. The prediction showed that the incidence in China will continue to increase. In terms of risk factors, smoking was the leading attributable cause of mortality in all countries, followed by occupational risk and ambient particulate matter pollution. Notably, smoking in China exhibited the largest increase among the G20 countries, with ambient particulate matter pollution ranking second.ConclusionLung cancer is a serious public health concern in China, with smoking and environmental particulate pollution identified as the most important risk factors. The incidence and mortality rates are expected to continue to increase, which places higher demands on China’s lung cancer prevention and control strategies. It is urgent to tailor intervention measures targeting smoking and environmental pollution to contain the burden of lung cancer

    Simple Culture Methods and Treatment to Study Hormonal Regulation of Ovule Development

    Get PDF
    Ovule development is one of the most important processes in the reproductive development of higher plants and is a determinant of seed quality and quantity. Phytohormones play key roles in this process since loss-of-function mutants in hormone signaling show defective ovule phenotypes and reduced fertility. However, it is difficult to distinguish the direct effects of hormones on ovule development because it is parts of reproductive development and the defective phenotypes would be the indirect effects following the defective vegetative development. The treatment of hormones is a direct method to investigate the hormonal regulation of ovule development, but ovule is embedded inside several layers of floral organs, and traditional methods for hormone (or inhibitor) treatments have various limitations. We have developed simple methods to apply treatments to the flowers in a living plant, where an inflorescence apex is immersed into a solution in an inverted tube. We have also developed a specific system to culture and treat excised flowers/pistils. These procedures will be useful for research on the hormonal regulation of ovule development. We provide examples of how treatments with brassinosteroids (BR) and BR biosynthesis inhibitor. We cultured and treated plant materials using our newly developed methods, and observed the morphology of wild type ovules and fluorescence signals in a marker line to monitor the progress of ovule development. The results demonstrate BR promotes ovule development and our new methods are efficient and repeatable

    Endophyte Chaetomium globosum D38 Promotes Bioactive Constituents Accumulation and Root Production in Salvia miltiorrhiza

    Get PDF
    Salvia miltiorrhiza is known for tanshinones and salvianolic acids, which have been shown to have a protective effect against ROS, especially for cardiovascular diseases and other various ailments of human organs. Due to the low yield of tanshinones and their analogs in S. miltiorrhiza, multiple stimulation strategies have been developed to improve tanshinones production in plant tissue cultures. Endophytic fungi have been reported to form different relationships with their host plants, including symbiotic, mutualistic, commensalistic, and parasitic interactions. Thus we take the assumption that endophytic fungi may be a potential microbial tool for secondary metabolism promotion in medicinal plants. We recently isolated Chaetomium globosum D38 from the roots of S. miltiorrhiza and our study aimed to examine the effects of this live endophytic fungus D38 and its elicitor on the accumulation of tanshinones in the hairy root cultures of S. miltiorrhiza. Our results revealed that C. globosum D38 mainly colonized in the intercellular gap of xylem parenchyma cells of S. miltiorrhiza hairy roots during the long term co-existence without any toxicity. Moreover, both of the live fungus and its mycelia extract could increase the production of tanshinones, especially for dihydrotanshinone I and cryptotanshinone. The effect of the mycelia extract was much stronger than that of the live fungus on tanshinones synthesis, which significantly increased the transcriptional activity of those key genes in tanshinone biosynthetic pathway. Furthermore, the live C. globosum D38 could also be made into biotic fertilizer used for S. miltiorrhiza seedlings culture, which not only significantly promoted the growth of the host plant, but also notably enhanced the accumulation of tanshinones and salvianolic acids. We thus speculated that, in the soil environment D38 could form bitrophic and mutual beneficial interactions with the host and enhance the plant growth and its secondary metabolism on the whole so as to have facilitative effects on both tanshinones and salvianolic acids accumulation. In conclusion, Chaetomium globosum D38 was a highly beneficial endophytic fungus for the growth and metabolism of S. miltiorrhiza

    Effects of total flavonoids from Drynariae Rhizoma prevent bone loss in vivo and in vitro

    Get PDF
    AbstractEstrogen deficiency is one of the major causes of osteoporosis in postmenopausal women. Drynariae Rhizoma is a widely used traditional Chinese medicine for the treatment of bone diseases. In this study, we investigated the therapeutic effects of the total Drynariae Rhizoma flavonoids (DRTF) on estrogen deficiency-induced bone loss using an ovariectomized rat model and osteoblast-like MC3T3-E1 cells. Our results indicated that DRTF produced osteo-protective effects on the ovariectomized rats in terms of bone loss reduction, including decreased levels of bone turnover markers, enhanced biomechanical femur strength and trabecular bone microarchitecture deterioration prevention. In vitro experiments revealed that the actions of DRTF on regulating osteoblastic activities were mediated by the estrogen receptor (ER) dependent pathway. Our data also demonstrated that DRTF inhibited osteoclastogenesis via up-regulating osteoprotegrin (OPG), as well as down-regulating receptor activator of NF–κB ligand (RANKL) expression. In conclusion, this study indicated that DRTF treatment effectively suppressed bone mass loss in an ovariectomized rat model, and in vitro evidence suggested that the effects were exerted through actions on both osteoblasts and osteoclasts
    corecore