169,074 research outputs found

    The static quark potential for dynamical domain wall fermion simulations

    Get PDF
    We present preliminary results for the static quark potential computed on some of the DWF lattice configurations generated by the RBC-UKQCD collaborations. Most of these results were obtained using Wilson lines joining spatial planes fixed into the Coulomb gauge. We compare the results from this method with the earlier ones on 163×3216^3 \times 32 lattices using Bresenham spatial paths with APE smeared link variables. Some preliminary results on 243×6424^3 \times 64 lattices are also presented.Comment: 7 pages, 11 figures. Talk presented at XXIVth International Symposium on Lattice Field Theory, July 23-28, 2006, Tuscon, Arizona, USA. To appear in PoS(LAT2006)18

    Block encryption of quantum messages

    Get PDF
    In modern cryptography, block encryption is a fundamental cryptographic primitive. However, it is impossible for block encryption to achieve the same security as one-time pad. Quantum mechanics has changed the modern cryptography, and lots of researches have shown that quantum cryptography can outperform the limitation of traditional cryptography. This article proposes a new constructive mode for private quantum encryption, named EHE\mathcal{EHE}, which is a very simple method to construct quantum encryption from classical primitive. Based on EHE\mathcal{EHE} mode, we construct a quantum block encryption (QBE) scheme from pseudorandom functions. If the pseudorandom functions are standard secure, our scheme is indistinguishable encryption under chosen plaintext attack. If the pseudorandom functions are permutation on the key space, our scheme can achieve perfect security. In our scheme, the key can be reused and the randomness cannot, so a 2n2n-bit key can be used in an exponential number of encryptions, where the randomness will be refreshed in each time of encryption. Thus 2n2n-bit key can perfectly encrypt O(n2n)O(n2^n) qubits, and the perfect secrecy would not be broken if the 2n2n-bit key is reused for only exponential times. Comparing with quantum one-time pad (QOTP), our scheme can be the same secure as QOTP, and the secret key can be reused (no matter whether the eavesdropping exists or not). Thus, the limitation of perfectly secure encryption (Shannon's theory) is broken in the quantum setting. Moreover, our scheme can be viewed as a positive answer to the open problem in quantum cryptography "how to unconditionally reuse or recycle the whole key of private-key quantum encryption". In order to physically implement the QBE scheme, we only need to implement two kinds of single-qubit gates (Pauli XX gate and Hadamard gate), so it is within reach of current quantum technology.Comment: 13 pages, 1 figure. Prior version appears in eprint.iacr.org(iacr/2017/1247). This version adds some analysis about multiple-message encryption, and modifies lots of contents. There are no changes about the fundamental result
    corecore