169,074 research outputs found
The static quark potential for dynamical domain wall fermion simulations
We present preliminary results for the static quark potential computed on
some of the DWF lattice configurations generated by the RBC-UKQCD
collaborations. Most of these results were obtained using Wilson lines joining
spatial planes fixed into the Coulomb gauge. We compare the results from this
method with the earlier ones on lattices using Bresenham
spatial paths with APE smeared link variables. Some preliminary results on
lattices are also presented.Comment: 7 pages, 11 figures. Talk presented at XXIVth International Symposium
on Lattice Field Theory, July 23-28, 2006, Tuscon, Arizona, USA. To appear in
PoS(LAT2006)18
Block encryption of quantum messages
In modern cryptography, block encryption is a fundamental cryptographic
primitive. However, it is impossible for block encryption to achieve the same
security as one-time pad. Quantum mechanics has changed the modern
cryptography, and lots of researches have shown that quantum cryptography can
outperform the limitation of traditional cryptography.
This article proposes a new constructive mode for private quantum encryption,
named , which is a very simple method to construct quantum
encryption from classical primitive. Based on mode, we
construct a quantum block encryption (QBE) scheme from pseudorandom functions.
If the pseudorandom functions are standard secure, our scheme is
indistinguishable encryption under chosen plaintext attack. If the pseudorandom
functions are permutation on the key space, our scheme can achieve perfect
security. In our scheme, the key can be reused and the randomness cannot, so a
-bit key can be used in an exponential number of encryptions, where the
randomness will be refreshed in each time of encryption. Thus -bit key can
perfectly encrypt qubits, and the perfect secrecy would not be broken
if the -bit key is reused for only exponential times.
Comparing with quantum one-time pad (QOTP), our scheme can be the same secure
as QOTP, and the secret key can be reused (no matter whether the eavesdropping
exists or not). Thus, the limitation of perfectly secure encryption (Shannon's
theory) is broken in the quantum setting. Moreover, our scheme can be viewed as
a positive answer to the open problem in quantum cryptography "how to
unconditionally reuse or recycle the whole key of private-key quantum
encryption". In order to physically implement the QBE scheme, we only need to
implement two kinds of single-qubit gates (Pauli gate and Hadamard gate),
so it is within reach of current quantum technology.Comment: 13 pages, 1 figure. Prior version appears in
eprint.iacr.org(iacr/2017/1247). This version adds some analysis about
multiple-message encryption, and modifies lots of contents. There are no
changes about the fundamental result
- …
