19,410 research outputs found

    Distribution of HNCO 505−404_{05}-4_{04} in Massive Star-forming Regions

    Full text link
    The goal of this paper is to study the spatial distribution of HNCO in massive star-forming regions, and investigate its spatial association with infrared sources, as well as physical conditions in region of HNCO emission. We have mapped nine massive star-forming regions in HNCO 505−404_{05}-4_{04} with the Purple Mountain Observatory 13.7m telescope. The C18O maps of these sources were obtained simultaneously. The HNCO emission shows compact distribution, with emission peak centred on water masers. Nearly all the HNCO clumps show signs of embedded mid-infrared or far-infrared sources. The FWHM sizes of HNCO clumps are significantly smaller than C18O clumps but rather similar to HC3N clumps. We also found good correlation between the integrated intensities, linewidths and LSR velocities of HNCO and HC3N emission, implying similar excitation mechanism of these two species. As such, collisional excitation is likely to be the dominant excitation mechanism for HNCO 505−404_{05}-4_{04} emission in galactic massive star-forming regions.Comment: 9 pages, 4 figures, accepted by A&

    Interacting heavy fermions in a disordered optical lattice

    Full text link
    We have theoretically studied the effect of disorder on ultracold alkaline-earth atoms governed by the Kondo lattice model in an optical lattice via simplified double-well model and hybridization mean-field theory. Disorder-induced narrowing and even complete closure of hybridization gap have been predicted and the compressibility of the system has also been investigated for metallic and Kondo insulator phases in the presence of the disordered potential. To make connection to the experimental situation, we have numerically solved the disordered Kondo lattice model with an external harmonic trap and shown both the melting of Kondo insulator plateau and an compressibility anomaly at low-density
    • …
    corecore