4,730 research outputs found

    Generation of two-giant-atom entanglement in waveguide-QED systems

    Full text link
    We study the generation of quantum entanglement between two giant atoms coupled to a one-dimensional waveguide. Since each giant atom interacts with the waveguide at two separate coupling points, there exist three different coupling configurations in the two-atom waveguide system: the separated, braided, and nested couplings. Within the Wigner-Weisskopf framework for single coupling points, the quantum master equations governing the evolution of the two giant atoms are obtained. For each coupling configuration, the entanglement dynamics of the two giant atoms is studied, including the cases of two different atomic initial states: single- and double-excitation states. It is shown that the generated entanglement depends on the coupling configuration, phase shift, and atomic initial state. For the single-excitation initial state, there exists steady-state entanglement for these three couplings due to the appearance of the dark state. For the double-excitation initial state, an entanglement sudden birth is observed via adjusting the phase shift. In particular, the maximal entanglement for the nested coupling is about one order of magnitude larger than those of separate and braided couplings. In addition, the influence of the atomic frequency detuning on the entanglement generation is studied. This work can be utilized for the generation and control of atomic entanglement in quantum networks based on giant-atom waveguide-QED systems, which have wide potential applications in quantum information processing.Comment: 13 pages, 8 figures, to appear in Physical Review A. arXiv admin note: substantial text overlap with arXiv:2303.1474

    Ghrelin, a Gastric Hormone with Diverse Functions

    Get PDF

    Sky-GVINS: a Sky-segmentation Aided GNSS-Visual-Inertial System for Robust Navigation in Urban Canyons

    Full text link
    Integrating Global Navigation Satellite Systems (GNSS) in Simultaneous Localization and Mapping (SLAM) systems draws increasing attention to a global and continuous localization solution. Nonetheless, in dense urban environments, GNSS-based SLAM systems will suffer from the Non-Line-Of-Sight (NLOS) measurements, which might lead to a sharp deterioration in localization results. In this paper, we propose to detect the sky area from the up-looking camera to improve GNSS measurement reliability for more accurate position estimation. We present Sky-GVINS: a sky-aware GNSS-Visual-Inertial system based on a recent work called GVINS. Specifically, we adopt a global threshold method to segment the sky regions and non-sky regions in the fish-eye sky-pointing image and then project satellites to the image using the geometric relationship between satellites and the camera. After that, we reject satellites in non-sky regions to eliminate NLOS signals. We investigated various segmentation algorithms for sky detection and found that the Otsu algorithm reported the highest classification rate and computational efficiency, despite the algorithm's simplicity and ease of implementation. To evaluate the effectiveness of Sky-GVINS, we built a ground robot and conducted extensive real-world experiments on campus. Experimental results show that our method improves localization accuracy in both open areas and dense urban environments compared to the baseline method. Finally, we also conduct a detailed analysis and point out possible further directions for future research. For detailed information, visit our project website at https://github.com/SJTU-ViSYS/Sky-GVINS
    • …
    corecore