22,386 research outputs found

    Quantum phase transition in a three-level atom-molecule system

    Full text link
    We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level structure, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.Comment: 8 pages,8 figure

    Bs0Bˉs0B_s^0-\bar{B}_s^0 mixing within minimal flavor-violating two-Higgs-doublet models

    Full text link
    In the "Higgs basis" for a generic 2HDM, only one scalar doublet gets a nonzero vacuum expectation value and, under the criterion of minimal flavor violation, the other one is fixed to be either color-singlet or color-octet, which are named as the type-III and type-C models, respectively. In this paper, the charged-Higgs effects of these two models on Bs0Bˉs0B_s^0-\bar{B}_s^0 mixing are studied. Firstly, we perform a complete one-loop computation of the electro-weak corrections to the amplitudes of Bs0Bˉs0B_s^0-\bar{B}_s^0 mixing. Together with the up-to-date experimental measurements, a detailed phenomenological analysis is then performed in the cases of both real and complex Yukawa couplings of charged scalars to quarks. The spaces of model parameters allowed by the current experimental data on Bs0Bˉs0B_s^0-\bar{B}_s^0 mixing are obtained and the differences between type-III and type-C models are investigated, which is helpful to distinguish between these two models.Comment: 19 pages, 3 figures, 2 tables; More references and discussions added, final version published in the journa

    RAG-1 Mutations Associated with B-Cell-Negative SCID Dissociate the Nicking and Transesterification Steps of V(D)J Recombination

    Get PDF
    Some patients with B-cell-negative severe combined immune deficiency (SCID) carry mutations in RAG-1 or RAG-2 that impair V(D)J recombination. Two recessive RAG-1 mutations responsible for B-cell-negative SCID, R621H and E719K, impair V(D)J recombination without affecting formation of single-site recombination signal sequence complexes, specific DNA contacts, or perturbation of DNA structure at the heptamer-coding junction. The E719K mutation impairs DNA cleavage by the RAG complex, with a greater effect on nicking than on transesterification; a conservative glutamine substitution exhibits a similar effect. When cysteine is substituted for E719, RAG-1 activity is enhanced in Mn2+ but remains impaired in Mg2+, suggesting an interaction between this residue and an essential metal ion. The R621H mutation partially impairs nicking, with little effect on transesterification. The residual nicking activity of the R621H mutant is reduced at least 10-fold upon a change from pH 7.0 to pH 8.4. Site-specific nicking is severely impaired by an alanine substitution at R621 but is spared by substitution with lysine. These observations are consistent with involvement of a positively charged residue at position 621 in the nicking step of the RAG-mediated cleavage reaction. Our data provide a mechanistic explanation for one form of hereditary SCID. Moreover, while RAG-1 is directly involved in catalysis of both nicking and transesterification, our observations indicate that these two steps have distinct catalytic requirements

    PQCD study of the BSLB_{SL} and ncn_c controversy in inclusive BB decays

    Get PDF
    We calculate the semileptonic branching ratio and the charm counting of inclusive BB meson decays using the perturbative QCD formalism. For the nonleptonic decays, we employ the modified factorization theorem, in which Wilson coefficients evolve with the characteristic scales of the decay modes. It is found that the decay rate of the single-charm mode bcuˉdb\to c{\bar u}d is enhanced, and a lower BSLB_{SL} is obtained without increasing ncn_c. We predict a larger bcτνˉb\to c \tau \bar{\nu} branching ratio compared to that from the conventional heavy-quark-effective-theory based operator product expansion. Our result of the BB meson lifetime is also consistent with the data.Comment: 12 pages, late
    corecore