45 research outputs found
Indoor Location in WLAN Based on Competitive Agglomeration Algorithm
Abstract In the area of Wireless Local Area Network (WLAN) based indoor localization, the k-nearest neighbors (KNN) fusion clustering algorithm has been studied extensively. But the number of the clustering and the value of K is set manually and fixed, so it can't adapt to the environment changes. Besides, the algorithm localization with a single Received Signal Strength (RSS), and ignored other deeper information such as the physical location information. Aiming at the shortcomings of the fusion algorithm, in this paper, we proposed a novel indoor localization algorithm based on competitive agglomeration (CA). The algorithm soft partition radio map based on RSS and physical location information in succession, and select the clustering number based on real time information in the environment to estimate user's position coordinates. Finally, based on the extensive experiments conducted in a real WLAN indoor environment, our proposed algorithm is proved to outperform traditional positioning algorithm
A Comprehensive Survey on Orbital Edge Computing: Systems, Applications, and Algorithms
The number of satellites, especially those operating in low-earth orbit
(LEO), is exploding in recent years. Additionally, the use of COTS hardware
into those satellites enables a new paradigm of computing: orbital edge
computing (OEC). OEC entails more technically advanced steps compared to
single-satellite computing. This feature allows for vast design spaces with
multiple parameters, rendering several novel approaches feasible. The mobility
of LEO satellites in the network and limited resources of communication,
computation, and storage make it challenging to design an appropriate
scheduling algorithm for specific tasks in comparison to traditional
ground-based edge computing. This article comprehensively surveys the
significant areas of focus in orbital edge computing, which include protocol
optimization, mobility management, and resource allocation. This article
provides the first comprehensive survey of OEC. Previous survey papers have
only concentrated on ground-based edge computing or the integration of space
and ground technologies. This article presents a review of recent research from
2000 to 2023 on orbital edge computing that covers network design, computation
offloading, resource allocation, performance analysis, and optimization.
Moreover, having discussed several related works, both technological challenges
and future directions are highlighted in the field.Comment: 18 pages, 9 figures and 5 table
The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals
NOD-like receptor (NLR) proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC) and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1(-/-) mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and interleukin 6 (IL-6). The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apc(min/+) genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apc(min/+) colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R) antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1(-/-)Apc(min/+) mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1
Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components
NLRs (nucleotide-binding domain leucine-rich repeat proteins or NOD-like receptors) are regulators of inflammation and immunity. A subgroup of NLRs and the innate immune receptor, AIM2 (absent-in-melanoma 2), can induce the assembly of a large caspase-1 activating complex called the inflammasome. Other NLRs regulate key signaling pathways such as NF-kB and MAPK. Since inflammation is a central component of colorectal cancer (CRC), this work was undertaken to analyze NLR and AIM2 expression in human CRC by combining bioinformatics analysis and experimental verification using clinical tissue samples. Additional experiments analyzed the association of (i) gene expression and cancer staging, and (ii) gene expression among inflammasome components
MICA/B expression is inhibited by unfolded protein response and associated with poor prognosis in human hepatocellular carcinoma
BackgroundMICA/B are major ligands for NK cell activating receptor NKG2D and previous studies showed that the serum level of soluble MICA (sMICA) is an independent prognostic factor for advanced human hepatocellular carcinoma. However, the correlation between cellular MICA/B expression pattern and human hepatocellular carcinoma progression has not been well explored. The unfolded protein response is one of the main causes of resistance to chemotherapy and radiotherapy in tumor cells. However, whether the UPR in HCC could regulate the expression levels of MICA/B and affect the sensitivity of HCC cells to NK cell cytolysis has not been established yet.MethodsMICA/B expression pattern was evaluated by immunohistochemistry and Kaplan-Meier survival analysis was done to explore the relationship between MICA/B expression level and patient survival. The protein and mRNA expression levels of MICA/B in SMMC7721 and HepG2 cells treated by tunicamycin were evaluated by flow cytometry, Western Blot and RT-PCR. The cytotoxicity analysis was performed with the CytoTox 96 Non-Radioactive LDH Cytotoxicity Assay.ResultsMICA/B was highly expressed in human hepatocellular carcinoma and the expression level was significantly and negatively associated with tumor-node metastasis (TNM) stages. Patients with low level of MICA/B expression showed a trend of shorter survival time. The unfolded protein response (UPR) downregulated the expression of MICA/B. This decreased protein expression occurred via post-transcriptional regulation and was associated with proteasomal degradation. Moreover, decreased expression level of MICA/B led to the attenuated sensitivity of human HCC to NK cell cytotoxicity.ConclusionThese new findings of the connection of MICA/B, UPR and NK cells may represent a new concrete theory of NK cell regulation in HCC, and suggest that targeting this novel NK cell-associated immune evasion pathway may be meaningful in treating patients with HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-014-0076-7) contains supplementary material, which is available to authorized users
Experimental Study on Compression Failure of Composite Laminates with Prefabricated Surface Cracks
A new compression test fixture was designed in the present work to study the damage tolerance of composite laminates with surface cracks or notches. The compression failure behaviors of CCF300/5228A quasi-isotropic composite laminates with prefabricated surface cracks were studied experimentally. Through the size design of the test fixture and specimens and an application of a simple test method, the complex crack growth process was captured. The experimental results showed that the compression failure modes were mainly affected by crack angles and depths, and there were two typical failure modes, which were local intra- and inter-laminar damage propagating from the crack tips and delamination growth induced from the crack leading edge. This study verified the validity of the test fixture and test method, and revealed the compression failure mechanisms of composite laminates with surface cracks