55 research outputs found

    Different Contexts in the Oddball Paradigm Induce Distinct Brain Networks in Generating the P300

    Get PDF
    Despite the P300 event-related potential (ERP) differences between distinct stimulus sequences, the effect of stimulus sequence on the brain network is still left unveiled. To uncover the corresponding effect of stimulus sequence, we thus investigated the differences of functional brain networks, when a target (T) or standard (S) stimulus was presented preceding another T as background context. Results of this study demonstrated that, when an S was first presented preceding a T (i.e., ST sequence), the P300 experiencing large amplitude was evoked by the T, along with strong network architecture. In contrast, if a T was presented in advance [i.e., target-to-target (TT) sequence], decreased P300 amplitude and attenuated network efficiency were demonstrated. Additionally, decreased activations in regions, such as inferior frontal gyrus and superior frontal gyrus were also revealed in TT sequence. Particularly, the effect of stimulus sequence on P300 network could be quantitatively measured by brain network properties, the increase in network efficiency corresponded to large P300 amplitude evoked in P300 task

    An Efficient Frequency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI

    Get PDF
    An efficient frequency recognition method is very important for SSVEP-based BCI systems to improve the information transfer rate (ITR). To address this aspect, for the first time, likelihood ratio test (LRT) was utilized to propose a novel multichannel frequency recognition method for SSVEP data. The essence of this new method is to calculate the association between multichannel EEG signals and the reference signals which were constructed according to the stimulus frequency with LRT. For the simulation and real SSVEP data, the proposed method yielded higher recognition accuracy with shorter time window length and was more robust against noise in comparison with the popular canonical correlation analysis- (CCA-) based method and the least absolute shrinkage and selection operator- (LASSO-) based method. The recognition accuracy and information transfer rate (ITR) obtained by the proposed method was higher than those of the CCA-based method and LASSO-based method. The superior results indicate that the LRT method is a promising candidate for reliable frequency recognition in future SSVEP-BCI

    Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery

    Get PDF
    Common spatial pattern (CSP) is one of the most popular and effective feature extraction methods for motor imagery-based braincomputer interface (BCI), but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise. In this work, local temporal correlation (LTC) information was introduced to further improve the covariance matrices estimation (LTCCSP). Compared to the Euclidean distance used in a previous CSP variant named local temporal CSP (LTCSP), the correlation may be a more reasonable metric to measure the similarity of activated spatial patterns existing in motor imagery period. Numerical comparisons among CSP, LTCSP, and LTCCSP were quantitatively conducted on the simulated datasets by adding outliers to Dataset IVa of BCI Competition III and Dataset IIa of BCI Competition IV, respectively. Results showed that LTCCSP achieves the highest average classification accuracies in all the outliers occurrence frequencies. The application of the three methods to the EEG dataset recorded in our laboratory also demonstrated that LTCCSP achieves the highest average accuracy. The above results consistently indicate that LTCCSP would be a promising method for practical motor imagery BCI application
    corecore