192,509 research outputs found

    Using Different Approaches to Evaluate Individual Social Equity in Transport

    Get PDF
    Inequalities not only exist in the field of economics in relation to income and wealth, but also in other areas, such as the transport sector, where access to and use of different transport modes varies markedly across population groups, and which provides the means to access everyday living activities. A key concern within the transport sector is that inequality has extended beyond the traditional measures of travel, and now covers a wide range of effects relating to social exclusion, freedom, well-being and being able to access reasonable opportunities and resources. In order to address the aforementioned issues, an important question to resolve is what type of methods can be used to measure inequalities in transport most effectively. Therefore, this study aims to apply different approaches, including the Capabilities Approach (CA) and a further six inequality indices, namely the Gini coefficient, the Atkinson index, the Palma ratio, the Pietra ratio, the Schutz coefficient and the Theil index, to the case study using the relatively migrant-rich lower-income neighbourhood of Tuqiao, in Beijing, in order to assess individual transport-related social inequity issues. The findings suggest that the CA is useful in assessing transport-related inequalities where there are significant barriers to the take up of accessibility, for example where there are high levels of disadvantaged groups and disaggregated analysis can be undertaken. The Palma ratio appears to have a larger effect than the Gini coefficient and the other inequality indices when measuring transport-related social inequity. In addition, we also found that most income inequality methods adapted from econometrics may be better suited to measuring transport-related social inequity between different regions, cities or countries, or within the same area, but at different points in time, rather than to measuring a single neighbourhood as a whole. Finally, we argue that to what extent politicians or transport planners can use appropriate management tools to measure transport-related social inequalities may be significant in terms of the progress that can be made in the fight against social inequity in the transport field

    Flexible protein folding by ant colony optimization

    Get PDF
    Protein structure prediction is one of the most challenging topics in bioinformatics. As the protein structure is found to be closely related to its functions, predicting the folding structure of a protein to judge its functions is meaningful to the humanity. This chapter proposes a flexible ant colony (FAC) algorithm for solving protein folding problems (PFPs) based on the hydrophobic-polar (HP) square lattice model. Different from the previous ant algorithms for PFPs, the pheromones in the proposed algorithm are placed on the arcs connecting adjacent squares in the lattice. Such pheromone placement model is similar to the one used in the traveling salesmen problems (TSPs), where pheromones are released on the arcs connecting the cities. Moreover, the collaboration of effective heuristic and pheromone strategies greatly enhances the performance of the algorithm so that the algorithm can achieve good results without local search methods. By testing some benchmark two-dimensional hydrophobic-polar (2D-HP) protein sequences, the performance shows that the proposed algorithm is quite competitive compared with some other well-known methods for solving the same protein folding problems

    The B\to D_s^{(*)}\eta^{(\prime)} decays in the perturbative QCD

    Full text link
    In this paper, we calculate the branching ratios for B+→Ds+η,B+→Ds+η′B^+\to D_s^+\eta, B^+\to D_s^+\eta^{\prime}, B+→Ds∗+ηB^+\to D_s^{*+}\eta and B+→Ds∗+η′ B^+\to D_s^{*+}\eta^{\prime} decays by employing the perturbative QCD (pQCD) factorization approach. Under the two kinds of η−η′\eta-\eta^{\prime} mixing schemes, the quark-flavor mixing scheme and the singlet-octet mixing scheme, we find that the calculated branching ratios are consistent with the currently available experimental upper limits. We also considered the so called "fDsf_{D_s} puzzle", by using two groups of parameters about the Ds(∗)D^{(*)}_s meson decay constants, that is fDs=241f_{D_s}=241 MeV, fDs∗=272f_{D^*_s}=272 MeV and fDs=274f_{D_s}=274 MeV, fDs∗=312f_{D^*_s}=312 MeV, to calculate the branching ratios for the considered decays. We find that the results change 30%30\% by using these two different groups of paramters.Comment: 12 pages, 1 figure. Typos removed, minor correction

    Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells

    Get PDF
    Background: The sigma-2 receptor is an attractive target for tumor imaging and targeted therapy because it is overexpressed in multiple types of solid tumors, including prostate cancer, breast cancer, and lung cancer. SV119 is a synthetic small molecule that binds to sigma-2 receptors with high affinity and specificity. This study investigates the utility of SV119 in mediating the selective targeting of liposomal vectors in various types of cancer cells. Methods: SV119 was covalently linked with polyethylene glycol-dioleyl amido aspartic acid conjugate (PEG-DOA) to generate a novel functional lipid, SV119-PEG-DOA. This lipid was utilized for the preparation of targeted liposomes to enhance their uptake by cancer cells. Liposomes with various SV119 densities (0, 1, 3, and 5 mole%) were prepared and their cellular uptake was investigated in several tumor cell lines. In addition, doxorubicin (DOX) was loaded into the targeted and unmodified liposomes, and the cytotoxic effect on the DU-145 cells was evaluated by MTT assay. Results: Liposomes with or without SV119-PEG-DOA both have a mean diameter of approximately 90 nm and a neutral charge. The incorporation of SV119-PEG-DOA significantly increased the cellular uptake of liposomes by the DU-145, PC-3, A549, 201T, and MCF-7 tumor cells, which was shown by fluorescence microscopy and the quantitative measurement of fluorescence intensity. In contrast, the incorporation of SV119 did not increase the uptake of liposomes by the normal BEAS-2B cells. In a time course study, the uptake of SV119 liposomes by DU-145 cells was also significantly higher at each time point compared to the unmodified liposomes. Furthermore, the DOX-loaded SV119 liposomes showed significantly higher cytotoxicity to DU-145 cells compared to the DOX-loaded unmodified liposomes. Conclusion: SV119 liposomes were developed for targeted drug delivery to cancer cells. The targeting efficiency and specificity of SV119 liposomes to cancer cells was demonstrated in vitro. The results of this study suggest that SV119-modified liposomes might be a promising drug carrier for tumor-targeted delivery. © 2012 Zhang et al, publisher and licensee Dove Medical Press Ltd

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that A∈RN×NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank K≤NK \le N. Our goal is to decompose AA into KK rank-one matrices ∑k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]
    • …
    corecore