141 research outputs found

    A Benchmark of Video-Based Clothes-Changing Person Re-Identification

    Full text link
    Person re-identification (Re-ID) is a classical computer vision task and has achieved great progress so far. Recently, long-term Re-ID with clothes-changing has attracted increasing attention. However, existing methods mainly focus on image-based setting, where richer temporal information is overlooked. In this paper, we focus on the relatively new yet practical problem of clothes-changing video-based person re-identification (CCVReID), which is less studied. We systematically study this problem by simultaneously considering the challenge of the clothes inconsistency issue and the temporal information contained in the video sequence for the person Re-ID problem. Based on this, we develop a two-branch confidence-aware re-ranking framework for handling the CCVReID problem. The proposed framework integrates two branches that consider both the classical appearance features and cloth-free gait features through a confidence-guided re-ranking strategy. This method provides the baseline method for further studies. Also, we build two new benchmark datasets for CCVReID problem, including a large-scale synthetic video dataset and a real-world one, both containing human sequences with various clothing changes. We will release the benchmark and code in this work to the public

    Evaluation of recombinant baculovirus clearance during rAAV production in Sf9 cells using a newly developed fluorescent-TCID50 assay

    Get PDF
    IntroductionRecombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application.MethodsThe present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity.Results and discussionThe results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system

    Prognosis and long-term neurodevelopmental outcome in conservatively treated twin-to-twin transfusion syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amnioreduction remains a treatment option for pregnancies with twin-to-twin transfusion syndrome (TTTS) not meeting criteria for laser surgery or those in which it is not feasible. Amnioreduction is a relatively simple treatment which does not require sophisticated technical equipment. Previous reports of conservative management have indicated that major neurodevelopmental impairment occurs in 14.3-26% of survivors. The purpose of this study was to investigate long-term neurodevelopmental outcome in conservatively treated TTTS.</p> <p>Methods</p> <p>During the nine-year study period from January 1996 to December 2004, all pregnancies with TTTS who were admitted to our center were investigated. TTTS was diagnosed by using standard prenatal ultrasound criteria, and staged according to the criteria of Quintero <it>et al</it>. We reviewed gestational age at diagnosis, gestational age at delivery, the stage of TTTS at diagnosis, and diagnosis to delivery interval. Neonatal cranial ultrasound findings were reviewed and the neurodevelopmental outcomes were evaluated.</p> <p>Results</p> <p>Twenty-one pregnancies with TTTS were included. Thirteen pregnancies (62%) were treated with serial amnioreduction. The mean gestational age at delivery was 28 weeks (22 - 34 weeks). The perinatal mortality rate was 42.9%. Twenty survivors were followed up until at least 3 years of age. The mean age at follow-up was 6.3 years (3 - 12 years). Six children (30%) had neurodevelopmental impairment. Four children (20%) had major neurodevelopmental impairment and two children (10%) had minor neurodevelopmental impairment. Children with neurodevelopmental impairment were delivered before 29 weeks of gestation.</p> <p>Conclusions</p> <p>Our study showed a high rate of perinatal mortality and a high rate of major neurodevelopmental impairment in conservatively treated TTTS. The long-term outcomes for the survivors with TTTS were good when survivors were delivered after 29 weeks of gestation.</p

    Functionalized Copper Nanoparticles with Gold Nanoclusters: Part I. Highly Selective Electrosynthesis of Hydrogen Peroxide

    Get PDF
    Ā© 2023 The Authors. Published by American Chemical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Copper nanoparticles (CuNPs) and gold nanoclusters (AuNCs) show a high catalytic performance in generating hydrogen peroxide (H2O2), a property that can be exploited to kill disease-causing microbes and to carry carbon-free energy. Some combinations of NPs/NCs can generate synergistic effects to produce stronger antiseptics, such as H2O2 or other reactive oxygen species (ROS). Herein, we demonstrate a novel facile AuNC surface decoration method on the surfaces of CuNPs using galvanic displacement. The Cuā€“Au bimetallic NPs presented a high selective production of H2O2 via a two-electron (2eā€“) oxygen reduction reaction (ORR). Their physicochemical analyses were conducted by scanning electron microscopy (SEM), transmitting electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). With the optimized Cuā€“Au1.5NPs showing their particle sizes averaged in 53.8 nm, their electrochemical analysis indicated that the pristine AuNC structure exhibited the highest 2eā€“ selectivity in ORR, the CuNPs presented the weakest 2eā€“ selectivity, and the optimized Cuā€“Au1.5NPs exhibited a high 2eā€“ selectivity of 95% for H2O2 production, along with excellent catalytic activity and durability. The optimized Cuā€“Au1.5NPs demonstrated a novel pathway to balance the cost and catalytic performance through the appropriate combination of metal NPs/NCs.Peer reviewe

    Eunomia: Enabling User-specified Fine-Grained Search in Symbolically Executing WebAssembly Binaries

    Full text link
    Although existing techniques have proposed automated approaches to alleviate the path explosion problem of symbolic execution, users still need to optimize symbolic execution by applying various searching strategies carefully. As existing approaches mainly support only coarse-grained global searching strategies, they cannot efficiently traverse through complex code structures. In this paper, we propose Eunomia, a symbolic execution technique that allows users to specify local domain knowledge to enable fine-grained search. In Eunomia, we design an expressive DSL, Aes, that lets users precisely pinpoint local searching strategies to different parts of the target program. To further optimize local searching strategies, we design an interval-based algorithm that automatically isolates the context of variables for different local searching strategies, avoiding conflicts between local searching strategies for the same variable. We implement Eunomia as a symbolic execution platform targeting WebAssembly, which enables us to analyze applications written in various languages (like C and Go) but can be compiled into WebAssembly. To the best of our knowledge, Eunomia is the first symbolic execution engine that supports the full features of the WebAssembly runtime. We evaluate Eunomia with a dedicated microbenchmark suite for symbolic execution and six real-world applications. Our evaluation shows that Eunomia accelerates bug detection in real-world applications by up to three orders of magnitude. According to the results of a comprehensive user study, users can significantly improve the efficiency and effectiveness of symbolic execution by writing a simple and intuitive Aes script. Besides verifying six known real-world bugs, Eunomia also detected two new zero-day bugs in a popular open-source project, Collections-C.Comment: Accepted by ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) 202

    Data Release of the AST3-2 Automatic Survey from Dome A, Antarctica

    Full text link
    AST3-2 is the second of the three Antarctic Survey Telescopes, aimed at wide-field time-domain optical astronomy. It is located at Dome A, Antarctica, which is by many measures the best optical astronomy site on the Earth's surface. Here we present the data from the AST3-2 automatic survey in 2016 and the photometry results. The median 5Ļƒ\sigma limiting magnitude in ii-band is 17.8 mag and the light curve precision is 4 mmag for bright stars. The data release includes photometry for over 7~million stars, from which over 3,500 variable stars were detected, with 70 of them newly discovered. We classify these new variables into different types by combining their light curve features with stellar properties from surveys such as StarHorse.Comment: 16 pages, 20 figures, accepted for publication in MNRA
    • ā€¦
    corecore