31,671 research outputs found

    Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat.

    Get PDF
    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings

    On the predominant mechanisms active during the high power diode laser modification of the wettability characteristics of an SiO2/Al2O3-based ceramic material

    Get PDF
    The mechanisms responsible for modifications to the wettability characteristics of a SiO2/Al2O3-based ceramic material in terms of a test liquid set comprising of human blood, human blood plasma, glycerol and 4-octonol after high power diode laser (HPDL) treatment have been elucidated. Changes in the contact angle, , and hence the wettability characteristics of the SiO2/Al2O3-based ceramic were attributed primarily to: modifications to the surface roughness of the ceramic resulting from HPDL interaction which accordingly effected reductions in ; the increase in the surface O2 content of the ceramic after HPDL treatment; since an increase in surface O2 content intrinsically brings about a decrease in , and vice versa and the increase in the polar component of the surface energy, due to the HPDL induced surface melting and resolidification which consequently created a partially vitrified microstructure that was seen to augment the wetting action. However, the degree of influence exerted by each mechanism was found to differ markedly. Isolation of each of these mechanisms permitted the magnitude of their influence to be qualitatively determined. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the SiO2/Al2O3-based ceramic. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the SiO2/Al2O3-based ceramic, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics

    Highly-ordered graphene for two dimensional electronics

    Full text link
    With expanding interest in graphene-based electronics, it is crucial that high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001) Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce epitaxial graphene sheets on a semiconductor. In this paper we show that graphene grown from the SiC(0001ˉ)(000\bar{1}) (C-terminated) surface are of higher quality than those previously grown on SiC(0001). Graphene grown on the C-face can have structural domain sizes more than three times larger than those grown on the Si-face while at the same time reducing SiC substrate disorder from sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let

    Transport and anisotropy in single-crystalline SrFe2_2As2_2 and A0.6A_{0.6}K0.4_{0.4}Fe2_2As2_2 (AA = Sr, Ba) superconductors

    Full text link
    We have successfully grown high quality single crystals of SrFe2_2As2_2 and A0.6_{0.6}K0.4_{0.4}Fe2_2As2_2(A=Sr, Ba) using flux method. The resistivity, specific heat and Hall coefficient have been measured. For parent compound SrFe2_2As2_2, an anisotropic resistivity with ρc\rho_c / ρab\rho_{ab} as large as 130 is obtained at low temperatures. A sharp drop in both in-plane and out-plane resistivity due to the SDW instability is observed below 200 K. The angular dependence of in-plane magnetoresistance shows 2-fold symmetry with field rotating within ab plane below SDW transition temperature. This is consistent with a stripe-type spin ordering in SDW state. In K doped A0.6_{0.6}K0.4_{0.4}Fe2_2As2_2(A=Sr. Ba), the SDW instability is suppressed and the superconductivity appears with Tc_c above 35 K. The rather low anisotropy in upper critical field between H\parallelab and H\parallelc indicates inter-plane coupling play an important role in hole doped Fe-based superconductors.Comment: 12 pages, 6 figures. Accepted by Phys. Rev.

    The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation

    Full text link
    Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \textbf{D 78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that the pressure under HDL approximation is generally smaller than the perturbative result. In addition, we also calculate the quark number susceptibility (QNS) at finite temperature and finite chemical potential under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results with the corresponding ones in the previous literature.Comment: 12 pages, 3 figure
    corecore