14,045 research outputs found

    Significant edges in the case of a non-stationary Gaussian noise

    Get PDF
    In this paper, we propose an edge detection technique based on some local smoothing of the image followed by a statistical hypothesis testing on the gradient. An edge point being defined as a zero-crossing of the Laplacian, it is said to be a significant edge point if the gradient at this point is larger than a threshold s(\eps) defined by: if the image II is pure noise, then \P(\norm{\nabla I}\geq s(\eps) \bigm| \Delta I = 0) \leq\eps. In other words, a significant edge is an edge which has a very low probability to be there because of noise. We will show that the threshold s(\eps) can be explicitly computed in the case of a stationary Gaussian noise. In images we are interested in, which are obtained by tomographic reconstruction from a radiograph, this method fails since the Gaussian noise is not stationary anymore. But in this case again, we will be able to give the law of the gradient conditionally on the zero-crossing of the Laplacian, and thus compute the threshold s(\eps). We will end this paper with some experiments and compare the results with the ones obtained with some other methods of edge detection

    Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells

    Get PDF
    Donor liver-derived dendritic cells (DC) have recently been identified within various lymphoid and nonlymphoid tissues of organ allograft recipients, including nonimmunosuppressed mice transplanted with and permanently accepting major histocompatibility complex (MHC)-disparate hepatic allografts. These findings have raised questions about the basis of the tolerogenicity of the liver—and, in particular, about the properties of liver-derived DC. To study further the structure, immunophenotype and allostimu-latory activity of leukocytes resident in normal mouse (B10.BR; H-2k, I-Ek) liver, a procedure was developed to maximize the yield of viable, nonparenchymal cells (NPC) obtained following collagenase digestion of perfused liver fragments and density centrifugation (Per-coll). These cells comprised populations expressing lymphoid and myeloid cell surface antigens. As compared with spleen cells, they proved good allostimula-tors of naive (BIO; H-2b, I-E") splenic T cells when tested in primary mixed leukocyte reactions (MLR). After overnight (18-hr) incubation of the NPC, enrichment for transiently adherent, low-density (LD) cells on metrizamide gradients permitted the recovery of low numbers of cells (approx. 2-5 × 105 per liver), many of which displayed distinct DC morphology. Flow cytometric analysis revealed that these cells were CD3-, CD4-, CD8-, and B220-, but strongly expressed CD45 (leukocyte-common antigen), and mild-to-moderate levels of CD lib, heat-stable antigen, and CD44. The cells also expressed moderate intensity of NLDC 145 but not 33D1, DC restricted markers which have been shown to be differentially expressed on mouse DC isolated from various organs. This DC-enriched population was more strongly MHC class II(I-Ek)+ than NPC, as determined by immunocytochemistry and flow cytometry and exhibited much more potent allo-stimulatory activity for naive T cells. These findings demonstrate that freshly isolated murine liver NPC, and perhaps their counterparts in situ, exhibit allo-stimulatory activity that is enhanced in the nonadherent, low-density (DC-enriched) fraction after overnight culture. They further suggest that the © 1994 by Williams and Wilkins

    In vitro propagation and homing of liver-derived dendritic cell progenitors to lymphoid tissues of allogeneic recipients: Implications for the establishment and maintenance of donor cell chimerism following liver transplantation

    Get PDF
    Dendritic cell (DC) progenitors were propagated in liquid culture from nonparenchymal cells resident in normal mouse (B10.BR; H-2k, I-E+) liver in response to granulocyte-macrophage colony stimulating factor (GM-CSF). The liver-derived DC progenitors were MHC class II-/dim and did not express counter receptors for CTLA-4, a structural homologue of the Т cell activation molecule CD28. Following subcutaneous or intravenous injection, these liver-derived cells migrated to Т cell-dependent areas of lymph nodes and spleen of unmodified, allogeneic (BIO; H-2b; I-E_) recipients, where they were identified 1-5 days, and 1 and 2 months after injection by their strong surface expression of donor MHC class II (I-Ek) and their dendritic morphology. Maximal numbers of liver-derived DC in the spleen were recorded 5 days after injection. Both clusters of strongly donor MHC class II+ cells— and (more rarely) dividing cells—could also be identified, suggesting cell replication in situ. Using the same techniques employed to generate DC progenitors from normal liver, GM-CSF-stimulated cells were propagated for 10 days from the bone marrow and spleen of nonimmunosuppressed mice sacrificed 14 days after orthotopic liver transplantation (B10;H-2b → C3H;H-2k). Immunocytochemical staining for recipient and donor MHC class II phenotype revealed the growth both of host cells with DC characteristics, and of cells expressing donor alloantigens (I-Ab). These results are consistent with the growth, in response to GM-CSF, of donor-derived DC from progenitors seeded from the liver allograft to recipient lymphoid tissue. The functional activity of the progenitors of chimeric DC and the possible role of these cells in the establishment and maintenance of donor-specific tolerance following liver transplantation remain to be determined. © 1995 by Williams and Wilkins
    • …
    corecore