226,793 research outputs found

    Engineering a Conformant Probabilistic Planner

    Full text link
    We present a partial-order, conformant, probabilistic planner, Probapop which competed in the blind track of the Probabilistic Planning Competition in IPC-4. We explain how we adapt distance based heuristics for use with probabilistic domains. Probapop also incorporates heuristics based on probability of success. We explain the successes and difficulties encountered during the design and implementation of Probapop

    An example of optimal field cut in lattice gauge perturbation theory

    Full text link
    We discuss the weak coupling expansion of a one plaquette SU(2) lattice gauge theory. We show that the conventional perturbative series for the partition function has a zero radius of convergence and is asymptotic. The average plaquette is discontinuous at g^2=0. However, the fact that SU(2) is compact provides a perturbative sum that converges toward the correct answer for positive g^2. This alternate methods amounts to introducing a specific coupling dependent field cut, that turns the coefficients into g-dependent quantities. Generalizing to an arbitrary field cut, we obtain a regular power series with a finite radius of convergence. At any order in the modified perturbative procedure, and for a given coupling, it is possible to find at least one (and sometimes two) values of the field cut that provide the exact answer. This optimal field cut can be determined approximately using the strong coupling expansion. This allows us to interpolate accurately between the weak and strong coupling regions. We discuss the extension of the method to lattice gauge theory on a D-dimensional cubic lattice.Comment: 9 pages, 11 figs., uses revtex4, modified presentatio

    Towards First-principles Electrochemistry

    Full text link
    Chemisorbed molecules at a fuel cell electrode are a very sensitive probe of the surrounding electrochemical environment, and one that can be accurately monitored with different spectroscopic techniques. We develop a comprehensive electrochemical model to study molecular chemisorption at either constant charge or fixed applied voltage, and calculate from first principles the voltage dependence of vibrational frequencies -- the vibrational Stark effect -- for CO adsorbed on close-packed platinum electrodes. The predicted vibrational Stark slopes are found to be in very good agreement with experimental electrochemical spectroscopy data, thereby resolving previous controversies in the quantitative interpretation of in-situ experiments and elucidating the relation between canonical and grand-canonicaldescriptions of vibrational surface phenomena.Comment: 10 pages, 2 figure

    Ratcheting Heat Flux against a Thermal Bias

    Full text link
    Merely rocking the temperature in one heat bath can direct a steady heat flux from cold to hot against a non-zero thermal bias in stylized nonlinear lattice junctions that are sandwiched between two heat baths. Likewise, for an average zero-temperature difference between the two contacts a net, ratchet-like heat flux emerges. Computer simulations show that this very heat flux can be controlled and reversed by suitably tailoring the frequency (\lesssim 100 MHz) of the alternating temperature field.Comment: 5 pages, 6 figure
    corecore