216,874 research outputs found
Anomalous thermopower and Nernst effect in : entropy-current loss in precursor state
The heavy-electron superconductor CeCoIn exhibits a puzzling precursor
state above its superconducting critical temperature at = 2.3 K. The
thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of
the electrons undergoes a steep decrease reaching 0 at .
Concurrently, the off-diagonal thermoelectric current is
enhanced. The delicate sensitivity of the zero-entropy state to field implies
phase coherence over large distances. The prominent anomalies in the
thermoelectric current contrast with the relatively weak effects in the
resistivity and magnetization.Comment: 5 figures, 4 page
Evaporative segregation in 80 percent Ni-20 percent Cr and 60 percent Fe-40 percent Ni alloys
The phenomenon of evaporative segregation in binary alloys has been investigated through a study of some experimental evaporation data relating to the Ni-Cr and Ni-Fr systems. In normal evaporation it is assumed that (1) the evaporating alloy is always homogeneous, (2) the vapor is instantly removed, and (3) the alloy follows Raoult's law. The solutions of the evaporation equations for the two most important cases are presented and experimental data are analyzed with these equations. The difference between observed and calculated values of evaporation constants lies within one order of magnitude. This is surprising because of the major assumptions stated above. Experimental results have shown that the evaporation time and final solute concentration are logarithmically related, further supporting our evaporation equations. It is further shown that neglecting the nonlogarithmic term in these evaporation equations may introduce considerable errors in the analysis
Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden
Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrificationDeComposition (DNDC), to model C dynamics in highlatitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a subarctic peatland at Stordalen, Sweden. DNDC simulated soil freeze–thaw dynamics, net ecosystem exchange of CO2 (NEE), and CH4 fluxes across three typical land cover types, which represent a gradient in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multiyear field measurements, and the validation indicates that DNDC was able to simulate observed differences in seasonal soil thaw, NEE, and CH4 fluxes across the three land cover types. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation not only increase net uptake of C from the atmosphere but also increase the annual to decadal radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict the soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework
Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752
Globular clusters (GCs) are emerging as a new class of gamma-ray emitters,
thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now,
eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the
stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs
out of all known GCs that have not been studied in details before. In this
paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC
6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and
NGC 6541, in which gamma-rays were found within the GC tidal radius. With one
of the highest metallicity among all GCs in the Milky Way, the gamma-ray
luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs.
In addition, we confirm a previous report of significant gamma-ray emitting
region next to NGC 6441. We briefly discuss the observed offset of gamma-rays
from some GC cores. The increasing number of known gamma-ray GCs at distances
out to ~10 kpc is important for us to understand the gamma-ray emitting
mechanism and provides an alternative probe to the underlying millisecond
pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925
We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR
J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is
consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded
light curve has a sinusoidal structure which is different from the
double-peaked gamma-ray pulse profile. We have also analysed the X-ray
phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is
thermal dominant. This suggests the X-ray pulsation mainly originates from the
modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting
around a high-mass Be type star with a very long orbital period of 25-50years,
and is approaching periastron, which will occur in late 2017/early 2018. This
system comprises with a young pulsar and a Be type star, which is similar to
the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore
that PSR J2032+4127 shows an enhancement of high-energy emission caused by the
interaction between the pulsar wind and Be wind/disk around periastron. Ho et
al. recently reported a rapid increase in the X-ray flux from this system. In
this paper, we also confirm a rapid increase in the X-ray flux along the orbit,
while the GeV flux shows no significant change. We discuss the high-energy
emissions from the shock caused by the pulsar wind and stellar wind interaction
and examine the properties of the pulsar wind in this binary system. We argue
that the rate of increase of the X-ray flux observed by Swift indicates (1) a
variation of the momentum ratio of the two-wind interaction region along the
orbit, or (2) an evolution of the magnetization parameter of the pulsar wind
with the radial distance from the pulsar. We also discuss the pulsar wind/Be
disk interaction at the periastron passage, and propose the possibility of
formation of an accretion disk around the pulsar. We model high-energy
emissions through the inverse-Compton scattering process of the
cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap
Parallel computations and control of adaptive structures
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed
- …