41,880 research outputs found

    First-principles calculations of a high-pressure synthesized compound PtC

    Full text link
    First-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that the platinum carbide has a zinc-blende ground-state phase at zero pressure and the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt is determined to be 52GPa. Furthermore, our calculation shows the possibility that the experimentally synthesized PtC by Ono et al. under high pressure condition might undergo a transition from rock-salt structure to zinc-blende after the pressure quench to ambient condition.Comment: A revised versio

    Multifractal analysis of weighted networks by a modified sandbox algorithm

    Get PDF
    Complex networks have attracted growing attention in many fields. As a generalization of fractal analysis, multifractal analysis (MFA) is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. Some algorithms for MFA of unweighted complex networks have been proposed in the past a few years, including the sandbox (SB) algorithm recently employed by our group. In this paper, a modified SB algorithm (we call it SBw algorithm) is proposed for MFA of weighted networks.First, we use the SBw algorithm to study the multifractal property of two families of weighted fractal networks (WFNs): "Sierpinski" WFNs and "Cantor dust" WFNs. We also discuss how the fractal dimension and generalized fractal dimensions change with the edge-weights of the WFN. From the comparison between the theoretical and numerical fractal dimensions of these networks, we can find that the proposed SBw algorithm is efficient and feasible for MFA of weighted networks. Then, we apply the SBw algorithm to study multifractal properties of some real weighted networks ---collaboration networks. It is found that the multifractality exists in these weighted networks, and is affected by their edge-weights.Comment: 15 pages, 6 figures. Accepted for publication by Scientific Report

    Number-resolved master equation approach to quantum transport under the self-consistent Born approximation

    Full text link
    We construct a particle-number(n)-resolved master equation (ME) approach under the self-consistent Born approximation (SCBA) for quantum transport through mesoscopic systems. The formulation is essentially non-Markovian and incorporates the interlay of the multi-tunneling processes and many-body correlations. The proposed n-SCBA-ME goes completely beyond the scope of the Born-Markov master equation, being applicable to transport under small bias voltage, in non-Markovian regime and with strong Coulomb correlations. For steady state, it can recover not only the exact result of noninteracting transport under arbitrary voltages, but also the challenging nonequilibrium Kondo effect. Moreover, the n-SCBA-ME approach is efficient for the study of shot noise.We demonstrate the application by a couple of representative examples, including particularly the nonequilibrium Kondo system.Comment: arXiv admin note: substantial text overlap with arXiv:1302.638
    corecore