384,626 research outputs found
Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24
Solar active region (AR) 12673 in 2017 September produced two largest flares
in Solar Cycle 24: the X9.3 flare on September 06 and the X8.2 flare on
September 10. We attempt to investigate the evolutions of the two great flares
and their associated complex magnetic system in detail. Aided by the NLFFF
modeling, we identify a double-decker flux rope configuration above the
polarity inversion line (PIL) in the AR core region. The north ends of these
two flux ropes were rooted in a negative- polarity magnetic patch, which began
to move along the PIL and rotate anticlockwise before the X9.3 flare on
September 06. The strong shearing motion and rotation contributed to the
destabilization of the two magnetic flux ropes, of which the upper one
subsequently erupted upward due to the kink-instability. Then another two sets
of twisted loop bundles beside these ropes were disturbed and successively
erupted within 5 minutes like a chain reaction. Similarly, multiple ejecta
components were detected to consecutively erupt during the X8.2 flare occurring
in the same AR on September 10. We examine the evolution of the AR magnetic
fields from September 03 to 06 and find that five dipoles emerged successively
at the east of the main sunspot. The interactions between these dipoles took
place continuously, accompanied by magnetic flux cancellations and strong
shearing motions. In AR 12673, significant flux emergence and successive
interactions between the different emerging dipoles resulted in a complex
magnetic system, accompanied by the formations of multiple flux ropes and
twisted loop bundles. We propose that the eruptions of a multi-flux-rope system
resulted in the two largest flares in Solar Cycle 24.Comment: 10 pages, 8 figures. To be published in A&
Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
Owing to its conceptual simplicity and computational efficiency, the
pseudopotential multiphase lattice Boltzmann (LB) model has attracted
significant attention since its emergence. In this work, we aim to extend the
pseudopotential LB model to simulate multiphase flows at large density ratio
and relatively high Reynolds number. First, based on our recent work [Li et
al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed
for the multiple-relaxation-time pseudopotential LB model in order to achieve
thermodynamic consistency and large density ratio in the model. Next, through
investigating the effects of the parameter a in the Carnahan-Starling equation
of state, we find that the interface thickness is approximately proportional to
1/sqrt(a). Using a smaller a will lead to a wider interface thickness, which
can reduce the spurious currents and enhance the numerical stability of the
pseudopotential model at large density ratio. Furthermore, it is found that a
lower liquid viscosity can be gained in the pseudopotential model by increasing
the kinematic viscosity ratio between the vapor and liquid phases. The improved
pseudopotential LB model is numerically validated via the simulations of
stationary droplet and droplet oscillation. Using the improved model as well as
the above treatments, numerical simulations of droplet splashing on a thin
liquid film are conducted at a density ratio in excess of 500 with Reynolds
numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly
reproduced and the predicted spread radius is found to obey the power law
reported in the literature.Comment: 9 figures, 2 tables, accepted by Physical Review E (in press
Research Program towards Observation of Neutrino-Nucleus Coherent Scattering
The article describes the research program pursued by the TEXONO
Collaboration towards an experiment to observe coherent scattering between
neutrinos and the nucleus at the power reactor. The motivations of studying
this process are surveyed. In particular, a threshold of 100-200 eV has been
achieved with an ultra-low-energy germanium detector prototype. This detection
capability at low energy can also be adapted to conduct searches of Cold Dark
Matter in the low-mass region as well as to enhance the sensitivities in the
study of neutrino magnetic moments.Comment: 5 pages, 8 figures ; Proceedings of TAUP-2005 Workshop, Spain, 2005.
Updated on 2006/9/15 for Proceedings of Neutrino-2006 Conference, Santa Fe,
200
The Effect of Scattering on Pulsar Polarization Angle
The low-frequency profiles of some pulsars manifest temporal broadening due
to scattering, usually accompanied by flat polarization position angle (PA)
curves. Assuming that the scattering works on the 4 Stokes parameters in the
same way, we have simulated the effect of scattering on polarization profiles
and find that the scattering can indeed flatten the PA curves. Since the
higher-frequency profiles suffer less from scattering, they are convolved with
scattering models to fit the observed low-frequency profiles. The calculated
flat PA curves exactly reproduce the corresponding observations.Comment: 4 pages. Accepted by A&
On the (non)rigidity of the Frobenius Endomorphism over Gorenstein Rings
It is well-known that for a large class of local rings of positive
characteristic, including complete intersection rings, the Frobenius
endomorphism can be used as a test for finite projective dimension. In this
paper, we exploit this property to study the structure of such rings. One of
our results states that the Picard group of the punctured spectrum of such a
ring cannot have -torsion. When is a local complete intersection,
this recovers (with a purely local algebra proof) an analogous statement for
complete intersections in projective spaces first given in SGA and also a
special case of a conjecture by Gabber. Our method also leads to many simply
constructed examples where rigidity for the Frobenius endomorphism does not
hold, even when the rings are Gorenstein with isolated singularity. This is in
stark contrast to the situation for complete intersection rings. Also, a
related length criterion for modules of finite length and finite projective
dimension is discussed towards the end.Comment: Minor changes in Example 2.2 and Theorem 2.9. Conjecture 1.2 was
added
Uranium on uranium collisions at relativistic energies
Deformation and orientation effects on compression, elliptic flow and
particle production in uranium on uranium collisions (UU) at relativistic
energies are studied within the transport model ART. The density compression in
tip-tip UU collisions is found to be about 30% higher and lasts approximately
50% longer than in body-body or spherical UU reactions. The body-body UU
collisions have the unique feature that the nucleon elliptic flow is the
highest in the most central collisions and remain a constant throughout the
reaction. We point out that the tip-tip UU collisions are more probable to
create the QGP at AGS and SPS energies while the body-body UU collisions are
more useful for studying properties of the QGP at higher energies.Comment: 8 pages + 4 figure
- …