384,626 research outputs found

    Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24

    Full text link
    Solar active region (AR) 12673 in 2017 September produced two largest flares in Solar Cycle 24: the X9.3 flare on September 06 and the X8.2 flare on September 10. We attempt to investigate the evolutions of the two great flares and their associated complex magnetic system in detail. Aided by the NLFFF modeling, we identify a double-decker flux rope configuration above the polarity inversion line (PIL) in the AR core region. The north ends of these two flux ropes were rooted in a negative- polarity magnetic patch, which began to move along the PIL and rotate anticlockwise before the X9.3 flare on September 06. The strong shearing motion and rotation contributed to the destabilization of the two magnetic flux ropes, of which the upper one subsequently erupted upward due to the kink-instability. Then another two sets of twisted loop bundles beside these ropes were disturbed and successively erupted within 5 minutes like a chain reaction. Similarly, multiple ejecta components were detected to consecutively erupt during the X8.2 flare occurring in the same AR on September 10. We examine the evolution of the AR magnetic fields from September 03 to 06 and find that five dipoles emerged successively at the east of the main sunspot. The interactions between these dipoles took place continuously, accompanied by magnetic flux cancellations and strong shearing motions. In AR 12673, significant flux emergence and successive interactions between the different emerging dipoles resulted in a complex magnetic system, accompanied by the formations of multiple flux ropes and twisted loop bundles. We propose that the eruptions of a multi-flux-rope system resulted in the two largest flares in Solar Cycle 24.Comment: 10 pages, 8 figures. To be published in A&

    Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model

    Full text link
    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/sqrt(a). Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.Comment: 9 figures, 2 tables, accepted by Physical Review E (in press

    Research Program towards Observation of Neutrino-Nucleus Coherent Scattering

    Full text link
    The article describes the research program pursued by the TEXONO Collaboration towards an experiment to observe coherent scattering between neutrinos and the nucleus at the power reactor. The motivations of studying this process are surveyed. In particular, a threshold of 100-200 eV has been achieved with an ultra-low-energy germanium detector prototype. This detection capability at low energy can also be adapted to conduct searches of Cold Dark Matter in the low-mass region as well as to enhance the sensitivities in the study of neutrino magnetic moments.Comment: 5 pages, 8 figures ; Proceedings of TAUP-2005 Workshop, Spain, 2005. Updated on 2006/9/15 for Proceedings of Neutrino-2006 Conference, Santa Fe, 200

    The Effect of Scattering on Pulsar Polarization Angle

    Full text link
    The low-frequency profiles of some pulsars manifest temporal broadening due to scattering, usually accompanied by flat polarization position angle (PA) curves. Assuming that the scattering works on the 4 Stokes parameters in the same way, we have simulated the effect of scattering on polarization profiles and find that the scattering can indeed flatten the PA curves. Since the higher-frequency profiles suffer less from scattering, they are convolved with scattering models to fit the observed low-frequency profiles. The calculated flat PA curves exactly reproduce the corresponding observations.Comment: 4 pages. Accepted by A&

    On the (non)rigidity of the Frobenius Endomorphism over Gorenstein Rings

    Get PDF
    It is well-known that for a large class of local rings of positive characteristic, including complete intersection rings, the Frobenius endomorphism can be used as a test for finite projective dimension. In this paper, we exploit this property to study the structure of such rings. One of our results states that the Picard group of the punctured spectrum of such a ring RR cannot have pp-torsion. When RR is a local complete intersection, this recovers (with a purely local algebra proof) an analogous statement for complete intersections in projective spaces first given in SGA and also a special case of a conjecture by Gabber. Our method also leads to many simply constructed examples where rigidity for the Frobenius endomorphism does not hold, even when the rings are Gorenstein with isolated singularity. This is in stark contrast to the situation for complete intersection rings. Also, a related length criterion for modules of finite length and finite projective dimension is discussed towards the end.Comment: Minor changes in Example 2.2 and Theorem 2.9. Conjecture 1.2 was added

    Uranium on uranium collisions at relativistic energies

    Get PDF
    Deformation and orientation effects on compression, elliptic flow and particle production in uranium on uranium collisions (UU) at relativistic energies are studied within the transport model ART. The density compression in tip-tip UU collisions is found to be about 30% higher and lasts approximately 50% longer than in body-body or spherical UU reactions. The body-body UU collisions have the unique feature that the nucleon elliptic flow is the highest in the most central collisions and remain a constant throughout the reaction. We point out that the tip-tip UU collisions are more probable to create the QGP at AGS and SPS energies while the body-body UU collisions are more useful for studying properties of the QGP at higher energies.Comment: 8 pages + 4 figure
    • …
    corecore