146,274 research outputs found

    Relative Ruan and Gromov-Taubes Invariants of Symplectic 4-Manifolds

    Full text link
    We define relative Ruan invariants that count embedded connected symplectic submanifolds which contact a fixed stable symplectic hypersurface V in a symplectic 4-manifold (X,w) at prescribed points with prescribed contact orders (in addition to insertions on X\V) for stable V. We obtain invariants of the deformation class of (X,V,w). Two large issues must be tackled to define such invariants: (1) Curves lying in the hypersurface V and (2) genericity results for almost complex structures constrained to make V pseudo-holomorphic (or almost complex). Moreover, these invariants are refined to take into account rim tori decompositions. In the latter part of the paper, we extend the definition to disconnected submanifolds and construct relative Gromov-Taubes invariants

    Compactification and Supersymmetry Breaking in M-theory

    Get PDF
    Keeping N=1 supersymmetry in 4-dimension and in the leading order, we disuss the various orbifold compactifications of M-theory suggested by Horava and Witten on T6/Z3T^6/Z_3, T6/Z6T^6/Z_6, T6/Z12T^6/Z_{12}, and the compactification by keeping singlets under SU(2)×U(1)SU(2)\times U(1) symmetry, then the compactification on S1/Z2S^1/Z_2. We also discuss the next to leading order K\"ahler potential, superpotential, and gauge kinetic function in the Z12Z_{12} case. In addition, we calculate the SUSY breaking soft terms and find out that the universality of the scalar masses will be violated, but the violation might be very small.Comment: 16 pages, latex, no figure

    Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean field theory

    Full text link
    A generalized one-dimensional SU(2)×SU(2)SU(2)\times SU(2) spin-orbital model is studied by Schwinger boson mean-field theory (SBMFT). We explore mainly the dimer phases and clarify how to capture properly the low temperature properties of such a system by SBMFT. The phase diagrams are exemplified. The three dimer phases, orbital valence bond solid (OVB) state, spin valence bond solid (SVB) state and spin-orbital valence bond solid (SOVB) state, are found to be favored in respectively proper parameter regions, and they can be characterized by the static spin and pseudospin susceptibilities calculated in SBMFT scheme. The result reveals that the spin-orbit coupling of SU(2)×SU(2)SU(2)\times SU(2) type serves as both the spin-Peierls and orbital-Peierles mechanisms that responsible for the spin-singlet and orbital-singlet formations respectively.Comment: 6 pages, 3 figure

    Magnetotransport properties of a magnetically modulated two-dimensional electron gas with the spin-orbit interaction

    Full text link
    We study the electrical transport properties of a two-dimensional electron gas with the Rashba spin-orbit interaction in presence of a constant perpendicular magnetic field (B0z^)(B_0 \hat z) which is weakly modulated by B1=B1cos(qx)z^{\bf B_1} = B_1 \cos (q x) \hat z, where B1B0B_1 \ll B_0 and q=2π/aq = 2 \pi/a with aa is the modulation period. We obtain the analytical expressions of the diffusive conductivities for spin-up and spin-down electrons. The conductivities for spin-up and spin-down electrons oscillate with different frequencies and produce beating patterns in the amplitude of the Weiss and Shubnikov-de Haas oscillations. We show that the Rashba strength can be determined by analyzing the beating pattern in the Weiss oscillation. We find a simple equation which determines the Rashba spin-orbit interaction strength if the number of Weiss oscillations between any two successive nodes is known from the experiment. We compare our results with the electrically modulated 2DEG with the Rashba interaction. For completeness, we also study the beating pattern formation in the collisional and the Hall conductivities.Comment: 11 pages, 5 figures, re-written with new result

    Ten Dimensional Black Hole and the D0-brane Threshold Bound State

    Get PDF
    We discuss the ten dimensional black holes made of D0-branes in the regime where the effective coupling is large, and yet the 11D geometry is unimportant. We suggest that these black holes can be interpreted as excitations over the threshold bound state. Thus, the entropy formula for the former is used to predict a scaling region of the wave function of the latter. The horizon radius and the mass gap predicted in this picture agree with the formulas derived from the classical geometry.Comment: 11 pages, harvmac; v2: typos corrected, argument for the convergence of two integrals improved, v3: one ref. adde

    Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    Full text link
    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.Comment: 37 pages, 11 figures, 4 table

    Constraints on Non-Commutative Physics Scale with Neutrino-Electron Scattering

    Get PDF
    Neutrino-electron scatterings (νe\nu - e) are purely leptonic processes with robust Standard Model (SM) predictions. Their measurements can therefore provide constraints to physics beyond SM. Non-commutative (NC) field theories modify space-time commutation relations, and allow neutrino electromagnetic couplings at the tree level. Their contribution to neutrino-electron scattering cross-section was derived. Constraints were placed on the NC scale parameter ΛNC\Lambda_{NC} from νe\nu - e experiments with reactor and accelerator neutrinos. The most stringent limit of ΛNC>3.3TeV\Lambda_{NC} > 3.3 TeV at 95% confidence level improves over the direct bounds from collider experiments.Comment: 6 pages, 2 figures, 2 tables, V2: minor revisions to match published versio
    corecore