146,274 research outputs found
Relative Ruan and Gromov-Taubes Invariants of Symplectic 4-Manifolds
We define relative Ruan invariants that count embedded connected symplectic
submanifolds which contact a fixed stable symplectic hypersurface V in a
symplectic 4-manifold (X,w) at prescribed points with prescribed contact orders
(in addition to insertions on X\V) for stable V. We obtain invariants of the
deformation class of (X,V,w). Two large issues must be tackled to define such
invariants: (1) Curves lying in the hypersurface V and (2) genericity results
for almost complex structures constrained to make V pseudo-holomorphic (or
almost complex). Moreover, these invariants are refined to take into account
rim tori decompositions. In the latter part of the paper, we extend the
definition to disconnected submanifolds and construct relative Gromov-Taubes
invariants
Compactification and Supersymmetry Breaking in M-theory
Keeping N=1 supersymmetry in 4-dimension and in the leading order, we disuss
the various orbifold compactifications of M-theory suggested by Horava and
Witten on , , , and the compactification by
keeping singlets under symmetry, then the compactification
on . We also discuss the next to leading order K\"ahler potential,
superpotential, and gauge kinetic function in the case. In addition,
we calculate the SUSY breaking soft terms and find out that the universality of
the scalar masses will be violated, but the violation might be very small.Comment: 16 pages, latex, no figure
Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean field theory
A generalized one-dimensional spin-orbital model is
studied by Schwinger boson mean-field theory (SBMFT). We explore mainly the
dimer phases and clarify how to capture properly the low temperature properties
of such a system by SBMFT. The phase diagrams are exemplified. The three dimer
phases, orbital valence bond solid (OVB) state, spin valence bond solid (SVB)
state and spin-orbital valence bond solid (SOVB) state, are found to be favored
in respectively proper parameter regions, and they can be characterized by the
static spin and pseudospin susceptibilities calculated in SBMFT scheme. The
result reveals that the spin-orbit coupling of type serves
as both the spin-Peierls and orbital-Peierles mechanisms that responsible for
the spin-singlet and orbital-singlet formations respectively.Comment: 6 pages, 3 figure
Magnetotransport properties of a magnetically modulated two-dimensional electron gas with the spin-orbit interaction
We study the electrical transport properties of a two-dimensional electron
gas with the Rashba spin-orbit interaction in presence of a constant
perpendicular magnetic field which is weakly modulated by , where and with
is the modulation period. We obtain the analytical expressions of the diffusive
conductivities for spin-up and spin-down electrons. The conductivities for
spin-up and spin-down electrons oscillate with different frequencies and
produce beating patterns in the amplitude of the Weiss and Shubnikov-de Haas
oscillations. We show that the Rashba strength can be determined by analyzing
the beating pattern in the Weiss oscillation. We find a simple equation which
determines the Rashba spin-orbit interaction strength if the number of Weiss
oscillations between any two successive nodes is known from the experiment. We
compare our results with the electrically modulated 2DEG with the Rashba
interaction. For completeness, we also study the beating pattern formation in
the collisional and the Hall conductivities.Comment: 11 pages, 5 figures, re-written with new result
Ten Dimensional Black Hole and the D0-brane Threshold Bound State
We discuss the ten dimensional black holes made of D0-branes in the regime
where the effective coupling is large, and yet the 11D geometry is unimportant.
We suggest that these black holes can be interpreted as excitations over the
threshold bound state. Thus, the entropy formula for the former is used to
predict a scaling region of the wave function of the latter. The horizon radius
and the mass gap predicted in this picture agree with the formulas derived from
the classical geometry.Comment: 11 pages, harvmac; v2: typos corrected, argument for the convergence
of two integrals improved, v3: one ref. adde
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Most numerical investigations on the role of magnetic fields in turbulent
molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However,
MCs are weakly ionized, so that the time scale required for the magnetic field
to diffuse through the neutral component of the plasma by ambipolar diffusion
(AD) can be comparable to the dynamical time scale. We have performed a series
of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems
with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein
(2006). Our calculations are based on the assumption that the number of ions is
conserved, but we show that these results approximately apply to the case of
time-dependent ionization in molecular clouds as well. Convergence studies
allow us to determine the optimal value of the ionization mass fraction when
using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent
systems. We find that ambipolar diffusion steepens the velocity and magnetic
power spectra compared to the ideal MHD case. Changes in the density PDF, total
magnetic energy, and ionization fraction are determined as a function of the AD
Reynolds number. The power spectra for the neutral gas properties of a strongly
magnetized medium with a low AD Reynolds number are similar to those for a
weakly magnetized medium; in particular, the power spectrum of the neutral
velocity is close to that for Burgers turbulence.Comment: 37 pages, 11 figures, 4 table
Constraints on Non-Commutative Physics Scale with Neutrino-Electron Scattering
Neutrino-electron scatterings () are purely leptonic processes with
robust Standard Model (SM) predictions. Their measurements can therefore
provide constraints to physics beyond SM. Non-commutative (NC) field theories
modify space-time commutation relations, and allow neutrino electromagnetic
couplings at the tree level. Their contribution to neutrino-electron scattering
cross-section was derived. Constraints were placed on the NC scale parameter
from experiments with reactor and accelerator
neutrinos. The most stringent limit of at 95%
confidence level improves over the direct bounds from collider experiments.Comment: 6 pages, 2 figures, 2 tables, V2: minor revisions to match published
versio
- …