71 research outputs found

    On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs

    Full text link
    Graph neural networks (GNNs) have been widely used in various graph-related problems such as node classification and graph classification, where the superior performance is mainly established when natural node features are available. However, it is not well understood how GNNs work without natural node features, especially regarding the various ways to construct artificial ones. In this paper, we point out the two types of artificial node features,i.e., positional and structural node features, and provide insights on why each of them is more appropriate for certain tasks,i.e., positional node classification, structural node classification, and graph classification. Extensive experimental results on 10 benchmark datasets validate our insights, thus leading to a practical guideline on the choices between different artificial node features for GNNs on non-attributed graphs. The code is available at https://github.com/zjzijielu/gnn-exp/.Comment: This paper has been accepted to the Sixth International Workshop on Deep Learning on Graphs (DLG-KDD'21) (co-located with KDD'21

    Study on surface asperity flattening in cold quasi-static uniaxial planar compression by crystal plasticity finite element method

    Get PDF
    In order to study the surface asperity flattening in a quasi-static cold uniaxial planar compression, the experimental results of atomic force microscope and electron backscattered diffraction have been employed in a ratedependent crystal plasticity model to analyze this process. The simulation results show a good agreement with the experimental results: in this quasi-static deformation process, lubrication can hinder the surface asperity flattening process even under very low deformation rate. However, due to the limitation of the model and some parameters, the simulation results cannot predict all the properties in detail such as S orientation {123}and the maximum stress in sample compressed without lubrication. In addition, the experimental results show, with an increase in gauged reduction, the development of Taylor factor, and CSL boundaries show certain tendencies. Under the same gauged reduction, friction can increase the Taylor factor and ÎŁ = 7

    Weak Magnetic Field Accelerates Chromate Removal by Zero-Valent Iron

    Get PDF
    Weak magnetic field (WMF) was employed to improve the removal of Cr(VI) by zero-valent iron (ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher pH. Fe2+ was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+ release rate in the absence of Cr(VI) at pH 4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+ release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI) removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore, WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation

    PV2TEA: Patching Visual Modality to Textual-Established Information Extraction

    Full text link
    Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute information extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established extractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.Comment: ACL 2023 Finding

    From a long-term dynamic perspective: how should internal carbon pricing be implemented?

    Get PDF
    Internal carbon pricing has the potential to positively influence enterprises’ carbon emissions. However, the strategies for implementing internal carbon pricing for enterprises and internal organizations remain unclear. In this study, employing a differential game research methodology, we design three implementation strategies for internal carbon pricing from a dynamic time perspective. Through comparative research and numerical analysis of these three different strategies’ effects on the changes in enterprise carbon emission reduction and goodwill, we find that for both enterprises’ carbon emission reduction and goodwill, Model C (implementing secondary investment for internal carbon fee collection) is optimal when the proportion of internal organizational revenue allocation is high and the proportion coefficient of internal carbon fee collection is low. When the proportion coefficient of internal carbon fee collection meets certain conditions, it makes the total profit of system under model C (implementing secondary investment for internal carbon fee collection) larger than the other two strategies. Due to short-sighted behavior, both enterprises’ profits and carbon emissions gradually decrease, leading to the internal carbon prices of enterprises under the three strategies will approach a stable value

    Characterization and comparisons of microbiota in different intestinal segments between adult Chinese Shanxi Black Pigs and Large White Pigs

    Get PDF
    The carcass weight of Chinese Shanxi Black Pigs is relatively lower in comparison with that of the counterparts, i.e., Large White Pigs, although the former are resistant to harsh conditions. Since gut microflora has been recognized to play a key role in pork production, it is of interest to explore the microbial communities in different intestinal segments of pigs and its potential relatedness with host features. In this study, 16S rRNA gene amplicon sequencing, accompanied by the inter- and intra-group comparisons, was implemented to investigate the structure composition and potential functions of microbial communities of four distinct intestinal segments [duodenum (D), jejunum (J), ileum (I), and cecum (C)] between adult Chinese Shanxi Black Pigs and Large White Pigs. Comparative survey revealed that the dominant phylum in both breeds was Firmicutes, followed by Proteobacteria, and Bacteroidetes. At the genus level, Lactobacillus was predominant in all samples, and Prevotella was specifically prevalent in the cecum. Further inspection showed the differences of dominant species in the same segments between these two groups. Notably, unique taxa in C and D segments were more than that in I and J segments. Additionally, each segment was characterized by specifically enriched genera, and distinctive pathways were predicted in certain intestinal segments. In short, the findings presented a coherent picture of structure composition and predicted functionalities of gut microbiota in diverse intestinal segments of adult Chinese Shanxi Black Pigs and Large White Pigs, and extend the understanding of potential link between intestinal microbiota and their hosts

    Microtexture based analysis of surface asperity flattening behavior of annealed aluminum alloy in uniaxial planar compression

    Get PDF
    During the uniaxial planar compression of annealed aluminum alloy, a novel approach to determine surface asperity flattening (roughness Ra) is employed by analyzing the evolution of surface microtexture. With an increase in gauged reduction, surface asperity tends to be flattened, and strain hardening increases. Lubrication can constrain the surface asperity flattening process. Development of surface asperity features shows the obvious dependency on [111] orientation. In-grain slips contribute significantly to the evolution of surface microtexture. Influence of deformation twins (brass orientation) on the evolution of microtexture is not obvious under our current experimental conditions
    • …
    corecore