7 research outputs found

    Dynamical polarization, screening, and plasmons in gapped graphene

    Full text link
    The one-loop polarization function of graphene has been calculated at zero temperature for arbitrary wavevector, frequency, chemical potential (doping), and band gap. The result is expressed in terms of elementary functions and is used to find the dispersion of the plasmon mode and the static screening within the random phase approximation. At long wavelengths the usual square root behaviour of plasmon spectra for two-dimensional (2D) systems is obtained. The presence of a small (compared to a chemical potential) gap leads to the appearance of a new undamped plasmon mode. At greater values of the gap this mode merges with the long-wavelength one, and vanishes when the Fermi level enters the gap. The screening of charged impurities at large distances differs from that in gapless graphene by slower decay of Friedel oscillations (1/r21/r^2 instead of 1/r31/r^3), similarly to conventional 2D systems.Comment: 8 pages, 8 figures, v2: to match published versio

    Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level

    Full text link
    The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method. The results show that close to the Fermi level the shell structure of a triangular flake is that of free massless particles, and that triangles with an armchair edge show an additional sequence of levels ("ghost states"). These levels result from the graphene band structure and the plane wave solution of the wave equation, and they are absent for triangles with an zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi level, and few low-energy conduction electron states occur both in triangular and hexagonal flakes due to symmetry reasons. Armchair triangles can be used as building blocks for other types of flakes that support the ghost states. Edge roughness has only a small effect on the level structure of the triangular flakes, but the effect is considerably enhanced in the other types of flakes. In round flakes, the states near the Fermi level depend strongly on the flake radius, and they are always localized on the zigzag parts of the edge

    Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer

    Full text link
    Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature. The strain and curvature strongly affect the local band structures of the twisted graphene bilayer; the energy difference of the two low-energy van Hove singularities decreases with increasing the lattice deformations and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap, i.e., the eight-fold degenerate Landau level at the charge neutrality point is splitted into two four-fold degenerate quartets polarized on each layer. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure

    Observation of Van Hove singularities in twisted graphene layers

    Full text link
    Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is difficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy and hence difficult to reach with standard doping and gating techniques. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunneling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases.Comment: 21 pages 5 figure
    corecore