28,216 research outputs found

    Combining Traditional Marketing and Viral Marketing with Amphibious Influence Maximization

    Full text link
    In this paper, we propose the amphibious influence maximization (AIM) model that combines traditional marketing via content providers and viral marketing to consumers in social networks in a single framework. In AIM, a set of content providers and consumers form a bipartite network while consumers also form their social network, and influence propagates from the content providers to consumers and among consumers in the social network following the independent cascade model. An advertiser needs to select a subset of seed content providers and a subset of seed consumers, such that the influence from the seed providers passing through the seed consumers could reach a large number of consumers in the social network in expectation. We prove that the AIM problem is NP-hard to approximate to within any constant factor via a reduction from Feige's k-prover proof system for 3-SAT5. We also give evidence that even when the social network graph is trivial (i.e. has no edges), a polynomial time constant factor approximation for AIM is unlikely. However, when we assume that the weighted bi-adjacency matrix that describes the influence of content providers on consumers is of constant rank, a common assumption often used in recommender systems, we provide a polynomial-time algorithm that achieves approximation ratio of (1−1/e−ϵ)3(1-1/e-\epsilon)^3 for any (polynomially small) ϵ>0\epsilon > 0. Our algorithmic results still hold for a more general model where cascades in social network follow a general monotone and submodular function.Comment: An extended abstract appeared in the Proceedings of the 16th ACM Conference on Economics and Computation (EC), 201

    Assisted optimal state discrimination without entanglement

    Full text link
    A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimination (AOSD) may be implemented successfully without entanglement, but with another correlation, quantum dissonance. However, both the original work and the extension to discrimination of dd states [Phys. Rev. A, 85 (2012) 022328] have only proved that entanglement can be absent in the case with equal a \emph{priori} probabilities. By improving the protocol in [Sci. Rep., 3 (2013) 2134], we investigate this topic in a simple case to discriminate three nonorthogonal states of a qutrit, with positive real overlaps. In our procedure, the entanglement between the qutrit and an auxiliary qubit is found to be completely unnecessary. This result shows that the quantum dissonance may play as a key role in optimal state discrimination assisted by a qubit for more general cases.Comment: 6 pages, 3 figures. Accepted by EPL. We extended the protocol for assisted optimal state discrimination to the case with positive real overlaps, and presented a proof for the absence of entanglemen

    YouTube AV 50K: An Annotated Corpus for Comments in Autonomous Vehicles

    Full text link
    With one billion monthly viewers, and millions of users discussing and sharing opinions, comments below YouTube videos are rich sources of data for opinion mining and sentiment analysis. We introduce the YouTube AV 50K dataset, a freely-available collections of more than 50,000 YouTube comments and metadata below autonomous vehicle (AV)-related videos. We describe its creation process, its content and data format, and discuss its possible usages. Especially, we do a case study of the first self-driving car fatality to evaluate the dataset, and show how we can use this dataset to better understand public attitudes toward self-driving cars and public reactions to the accident. Future developments of the dataset are also discussed.Comment: in Proceedings of the Thirteenth International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2018

    Fano resonance in a normal metal/ferromagnet-quantum dot-superconductor device

    Get PDF
    We investigate theoretically the Andreev transport through a quantum dot strongly coupled with a normal metal/ferromagnet and a superconductor (N/F-QD-S), in which the interplay between the Kondo resonance and the Andreev bound states (ABSs) has not been clearly clarified yet. Here we show that the interference between the Kondo resonance and the ABSs modifies seriously the lineshape of the Kondo resonance, which manifests as a Fano resonance. The ferromagnetic lead with spin-polarization induces an effective field, which leads to splitting both of the Kondo resonance and the ABSs. The spin-polarization together with the magnetic field applied provides an alternative way to tune the lineshape of the Kondo resonances, which is dependent of the relative positions of the Kondo resonance and of the ABSs. These results indicate that the interplay between the Kondo resonance and the ABSs can significantly affect the Andreev transport, which could be tested by experiments.Comment: 8pages, 7figure
    • …
    corecore