9,173 research outputs found

    Thermal Timescale Mass Transfer Rates in Intermediate-Mass X-ray Binaries

    Full text link
    Thermal timescale mass transfer generally occurs in close binaries where the donor star is more massive than the accreting star. The mass transfer rates are usually estimated in terms of the Kelvin-Helmholtz timescale of the donor star. But recent investigations indicate that this method may overestimate the real mass transfer rates in accreting white dwarf or neutron star binary systems. We have systematically investigated the thermal-timescale mass transfer processes in intermediate-mass X-ray binaries, by calculating binary evolution sequences with various initial donor masses and orbital periods. From the calculated results we find that on average the mass transfer rates are lower than traditional estimates by a factor of ∼4\sim 4.Comment: 13 pages, 4 figures, and 2 tables, accepted for publication in A&

    Identification of suitable reference genes for miRNA quantitation in bumblebee (Hymenoptera: Apidae) response to reproduction

    Get PDF
    International audienceAbstractThe precise quantification of microRNAs (miRNAs) expression level is a critical factor in mastering its functions. We evaluate the suitability of two common genes and ten miRNAs as normalizers for miRNA quantification in the head and ovary at different reproductive status of bumblebees, Bombus lantschouensis by using four different algorithms and one consensus rank approach. For the head and ovary combination, miR-275 was the best candidate. For different tissues, miR-275 was the most stable candidate in the head, while the candidate for the ovary was miR-277. To test the best candidate accuracy, miR-315 was demonstrated to be downregulated based on miR-275 normalization in ovipositor bumblebees. The miR-275 and miR-277 combination is identified to be the most reliable and suitable reference genes for the head and ovary of bumblebees
    • …
    corecore