16 research outputs found

    Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection

    No full text
    Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response

    Study on Computer Screening and Drug Properties of Herbs Intervening in Copper Death

    No full text
    Objective. The objective of this study was to explore the medicinal properties of herbal medicines that can interfere with the copper death pathway. Methods. The Human Gene Database, Chemical Interactions in Comparative Toxicogenomics Database, Encyclopedia of Traditional Chinese Medicine, China Medical Information Platform, and Cytoscape software were used to find target and chemicals that interfere with copper death targets, as well as herbal medicines containing these chemicals and their four natures and five flavors (basic properties of herbal medicines). Results. 27 copper death-related targets were finally retrieved, as well as 2143 chemicals that could interfere with them, including 180 herbal compounds. The compounds with the highest degree values (number of nodes connected to this node) were folic acid, resveratrol, and quercetin. The 180 compounds were related to 278 herbs; those with the highest degree values (number of nodes connected to this node) were Jujubae Fructus, Ginkgo biloba L, and Acanthopanax senticosus. The 27 copper death targets were indirectly associated with 278 herbs; those with the highest degree values (number of nodes connected to this node) were Achyranthis Bidentatae Radix, Polygonum cuspidatum Sieb. et Zucc, and Mori Folium. Among the 278 herbs, 6 had incomplete information. A pharmacological analysis showed that among the 272 Chinese herbs, the most frequent meridians were the liver (133), lung (104), and spleen (91). Of the four natures, the most frequent were cold (73), warm (68), and flat (45). Of the five flavors, the most frequent were bitter (165), pungent (116), and sweet (99). Conclusion. This study preliminarily discussed the material basis and medicinal properties of herbs that can intervene in copper death, which can provide reference for the theoretical discussion, drug development, and clinical research of Chinese medicine regulating copper death

    Construction and Evaluation of the Immunogenicity and Protective Efficacy of Recombinant Replication-Deficient Human Adenovirus-5 Expressing Genotype VII Newcastle Disease Virus F Protein and Infectious Bursal Disease Virus VP2 Protein

    No full text
    Newcastle disease (ND) and infectious bursal disease (IBD) are two key infectious diseases that significantly threaten the health of the poultry industry. Although existing vaccinations can effectively prevent and treat these two diseases through multiple immunizations, frequent immunization stresses significantly impact chicken growth. In this study, three recombinant adenoviruses, rAd5-F expressing the NDV (genotype VII) F protein, rAd5-VP2 expressing the IBDV VP2 protein, and rAd5-VP2-F2A-F co-expressing F and VP2 proteins, were constructed using the AdEasy system. The F and VP2 genes of the recombinant adenoviruses could be transcribed and expressed normally in HEK293A cells as verified by RT-PCR and Western blot. The three recombinant viruses were shown to have similar growth kinetics as rAd5-EGFP. Compared with the PBS and rAd5-EGFP groups, SPF chickens immunized with recombinant adenoviruses produced higher antibody levels, more significant lymphocyte proliferation, and significantly higher CD4+/CD3+ and CD8+/CD3+ cells in peripheral blood. The survival rate of SPF chickens immunized with rAd5-F and rAd5-VP2-F2A-F after the challenge with DHN3 was 100%, and 86% of SPF chickens showed no viral shedding at 7 dpc. The survival rate of SPF chickens immunized with rAd5-VP2 and rAd5-VP2-F2A-F after the challenge with BC6/85 was 86%. rAd5-VP2 and rAd5-VP2-F2A-F significantly inhibited bursal atrophy and pathological changes compared to the rAd5-EGFP and PBS groups. This study provides evidence that these recombinant adenoviruses have the potential to be developed into safe and effective vaccine candidates for the prevention and control of ND and IBD

    Parcel-Level Mapping of Horticultural Crop Orchards in Complex Mountain Areas Using VHR and Time-Series Images

    No full text
    Accurate and reliable farmland crop mapping is an important foundation for relevant departments to carry out agricultural management, crop planting structure adjustment and ecological assessment. The current crop identification work mainly focuses on conventional crops, and there are few studies on parcel-level mapping of horticultural crops in complex mountainous areas. Using Miaohou Town, China, as the research area, we developed a parcel-level method for the precise mapping of horticultural crops in complex mountainous areas using very-high-resolution (VHR) optical images and Sentinel-2 optical time-series images. First, based on the VHR images with a spatial resolution of 0.55 m, the complex mountainous areas were divided into subregions with their own independent characteristics according to a zoning and hierarchical strategy. The parcels in the different study areas were then divided into plain, greenhouse, slope and terrace parcels according to their corresponding parcel characteristics. The edge-based model RCF and texture-based model DABNet were subsequently used to extract the parcels according to the characteristics of different regions. Then, Sentinel-2 images were used to construct the time-series characteristics of different crops, and an LSTM algorithm was used to classify crop types. We then designed a parcel filling strategy to determine the categories of parcels based on the classification results of the time-series data, and accurate parcel-level mapping of a horticultural crop orchard in a complex mountainous area was finally achieved. Based on visual inspection, this method appears to effectively extract farmland parcels from VHR images of complex mountainous areas. The classification accuracy reached 93.01%, and the Kappa coefficient was 0.9015. This method thus serves as a methodological reference for parcel-level horticultural crop mapping and can be applied to the development of local precision agriculture

    Parcel-Level Mapping of Horticultural Crop Orchards in Complex Mountain Areas Using VHR and Time-Series Images

    No full text
    Accurate and reliable farmland crop mapping is an important foundation for relevant departments to carry out agricultural management, crop planting structure adjustment and ecological assessment. The current crop identification work mainly focuses on conventional crops, and there are few studies on parcel-level mapping of horticultural crops in complex mountainous areas. Using Miaohou Town, China, as the research area, we developed a parcel-level method for the precise mapping of horticultural crops in complex mountainous areas using very-high-resolution (VHR) optical images and Sentinel-2 optical time-series images. First, based on the VHR images with a spatial resolution of 0.55 m, the complex mountainous areas were divided into subregions with their own independent characteristics according to a zoning and hierarchical strategy. The parcels in the different study areas were then divided into plain, greenhouse, slope and terrace parcels according to their corresponding parcel characteristics. The edge-based model RCF and texture-based model DABNet were subsequently used to extract the parcels according to the characteristics of different regions. Then, Sentinel-2 images were used to construct the time-series characteristics of different crops, and an LSTM algorithm was used to classify crop types. We then designed a parcel filling strategy to determine the categories of parcels based on the classification results of the time-series data, and accurate parcel-level mapping of a horticultural crop orchard in a complex mountainous area was finally achieved. Based on visual inspection, this method appears to effectively extract farmland parcels from VHR images of complex mountainous areas. The classification accuracy reached 93.01%, and the Kappa coefficient was 0.9015. This method thus serves as a methodological reference for parcel-level horticultural crop mapping and can be applied to the development of local precision agriculture
    corecore