13 research outputs found

    Facile synthesis of porous graphene-like carbon nitride (C6N9H3) withexcellent photocatalytic activity for NO removal

    No full text
    We reported the possible synthesis of a new porous graphene-like carbon nitride (C6N9H3) by simply adding hydrochloric acid in the precursor of block g-C3N4. The formation of the porous graphene-like C6N9H3 can be attributed to the change in the thermal condensation modal of the precursor and the acidic condition induced by Cl&minus; and H+. The photocatalytic activity of the samples was evaluated by the removal of NO under visible light illumination. We found that the porous graphene-like C6N9H3 exhibited enhanced photocatalytic activity compared to the block g-C3N4.We also researched the removal mechanism and found that the removal of NO in our systems was due to the synergic effect of h+ and &bull;O2&minus;. This study could shed light on the design of efficient photocatalysts and facilitate a deep understanding of the NO removal mechanism through photocatalytic technology.</p

    Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling

    No full text
    The focus of this study is to evaluate the impact of biomass burning (BB) from South Asia and Southeast Asia on the glaciers over the Tibetan Plateau. The seasonality and long-term trend of biomass fires measured by Terra and Aqua satellite data from 2010 to 2016 are used in this study. The analysis shows that the biomass burnings were widely dispersed in the continental of Indian and Southeast Asia and existed a strong seasonal variation. The biomass burnings in winter (January) were relatively weak and scattered and were significantly enhanced in spring (April). The highest biomass burnings located in two regions. One was along the foothill of Himalayas, where is a dense population area, and the second located in Southeast Asia. Because these two high biomass burning regions are close to the Tibetan Plateau, they could have important effects on the BC deposition over the glaciers of the Tibetan Plateau. In order to study the effect of BB emissions on the deposition over the glaciers in the Tibetan Plateau, a regional chemical model (WRF-Chem; Weather Research and Forecasting Chemical model) was applied to simulate the BC distributions and the transport from BB emission regions to the glaciers in Tibetan Plateau. The result shows that in winter (January), due to the relatively weak BB emissions, the effect of BB emissions on BC concentrations was not significant. The BC concentrations resulted from BB emissions ranged from 0.1 to 2.0 &mu;g/m3, with high concentrations distributed along the foothill of Himalayas and the southeastern Asia region. Due to the relative low BC concentrations, there was insignificant effect of BB emissions on the deposition over the glaciers in the Tibetan Plateau in winter. However, the BB emissions were highest in spring (April), producing high BC concentrations. For example, along the Himalayas Mountain and in the southeastern Asia region, The BC concentrations ranged from 2.0 to 6.0 &mu;g/m3. In addition to the high BC concentrations, there were also west and south prevailing winds in these regions. As a result, the BC particles were transported to the glaciers in the Tibetan Plateau, causing significant deposition of BC particles on the snow surface of the glaciers. This study suggests that the biomass burning emissions have important effects on the BC deposition over the glaciers in the Tibetan Plateau, and the contaminations of glaciers could have significant impact on the melting of snow in the Tibetan Plateau, causing some severe environmental problems, such as the water resources.</p

    N-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: Concentrations, seasonal variations, and sources

    No full text
    Sixty-two suspended particle (TSP) samples were collected from Lulang on the southeastern Tibetan Plateau from July 2008 and July 2009 to investigate the concentrations, seasonal variations, and sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs). Samples were analyzed using thermal-deposition gas chromatography mass spectrometry. The concentrations of particulate total n-alkanes ranged from 0.10 to 21.83ngm-3, with an annual mean of 1.25ngm-3; the PAHs ranged from 0.06 to 2.53, with a mean of 0.59 ngm-3. Up to 70% of PAHs were 5- and 6-ring compounds. The n-alkanes and PAHs both showed higher concentrations in winter and lower concentrations in summer. Analyses of diagnostic ratios indicate that 6.4% to 58.9% (mean 24.9%) of the n-alkanes were from plant waxes. Source characterization studies, i.e. diagnostic ratio and positive factor matrix analysis, suggest that the PAHs were from biomass burning as well as from fossil fuel combustion. Backward trajectory analysis suggests that the biomass mass burning pollutants could be from South Asia and western China via long distance transport. The study contributes to a more comprehensive understanding of the concentrations, seasonal variations, and sources of n-alkanes and PAHs in a remote background area in Tibetan Plateau.</p

    Elemental profiles and signatures of fugitive dusts from Chinese deserts

    No full text
    Elemental profiles were determined for size-separated fugitive dust particles produced from Chinese desert and gobi soils. Seventeen surface soil samples from six Chinese deserts were collected, composited, resuspended, and sampled through TSP, PM10, and PM2.5 inlets onto Teflon&reg; filters, which were analyzed for twenty-six elements. Two major dust sources could be distinguished based on differences in crustal and enriched elements-the northwestern (NW) region (Taklimakan Desert, Xinjiang Gobi, and Anxinan Gobi) and northern (N) region (Ulan Buh Desert, Central Inner Mongolia Desert, and Erenhot Gobi). The N sources showed lower concentrations of mineral elements (Fe, K, Na, Ti, Mn, Cr, and Rb in PM10, and Fe, K, Ti, Mn, Co, and V in PM2.5) and higher levels of contaminants (S, Zn, Mo, Cu, Cr, Pb, Cd, and As) than the NW ones, especially in PM2.5. Enrichment factors for Cu, Cr, Zn, Pb, As, Mo, and Cd calculated relative to the upper continental crust showed enrichments of one to two orders-of-magnitude, and they were much higher for N sources than NW ones, implying stronger anthropogenic impacts in north China. Aerosol elemental concentrations during dust events at Horqin, Beijing, and Xi&#39;an matched the mass percentages of mineral elements from their presumptive sources better than the alternative ones, validating the differences between the NW and N sources. Additionally, Na/S, Mg/S, Fe/Al, K/Al, Si/Fe, and Na/Al ratios were suggested to differentiate the two dust source regions. The elemental ratios of Ca/Al, K/Al, Fe/Al, and Ti/Fe in the source regions matched those in aerosols collected downwind, and they can be considered as possible source indicators.</p

    Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement

    No full text
    Black carbon (BC) is important for climate forcing, and its effects on the Earth&#39;s radiative balance remain a major uncertainty in climate models. In this study, we investigated the mixing state of refractory black carbon (rBC) and aerosol optical properties in a polluted atmosphere at Xi&#39;an, western China. The average rBC mass concentration was 9.9 mu g m (3) during polluted periods, 7.6 times higher than that in clean periods. About 48.6% of the rBC was internally-mixed or coated with nonrefractory materials during polluted periods; this was 27% higher than in clean periods. Correlation analysis between the number fraction of thickly-coated rBC particles (f(BC)) and the major particulate species indicate that organics may be the primary contributor to rBC coatings during polluted periods. The average mass absorption cross section of rBC (MAC(BC)) particles at lambda = 870 nm was 7.6 +/- 0.02 m(2) g(-1) for the entire campaign. The MAC(BC) showed a positive correlation with f(BC), and the enhancement of MAC(BC) due to internal mixing was 1.8 times. These observations suggest that an enhancement of BC absorption by a factor of similar to 2 could be appropriate for climate models associated with high PM2.5 levels.</p

    Seasonal variation and four-year trend of black carbon in the Midwest China: The analysis of the ambient measurement and WRF-Chemmodeling

    No full text
    In-situ measurement of black carbon (BC) concentration from September 2003 to August 2007 in the Xi'an City at the Guanzhong Basin located in the mid-western China (the Guanzhong Basin) was analyzed. A regional dynamics and aerosol model (WRF-Chem) was used to quantify the impacts of local emission, meteorological conditions, and regional atmospheric transport on seasonal variation of BC concentration at the Guanzhong Basin. The results show that the regional prevailing winds at the Guanzhong Basin were unfavorable for the horizontal transport. The mean wind speeds ranged from 1.0 m/s to 1.9 m/s. During winter, the wind at the Guanzhong Basin was very weak (∼1.0 m/s). During spring and autumn, there was a wind convergent zone at the Guanzhong Basin, constraining the BC concentrations inside the Guanzhong Basin. As a result, the BC concentrations were persistently high at the Guanzhong Basin. In addition to the high background concentrations, there was a strong seasonal variation, with a maximum in winter (winter maximum) and a minimum in summer (summer minimum), with the maximum of the mean concentration of 30 μg m−3 in 2003–2004 winter, and the minimum of 5 μg m−3 in 2004 summer. The model sensitivity study shows that the seasonal variation of BC concentration was largely due to the seasonal variation of BC emission, especially during winter with the maximum of BC emission. A strong annual decrease trend of the BC concentration was found from 2004 to 2007. It is interesting to note that the decrease of the BC concentration only occurred in winter. For example, the winter maximum was 20 μg m−3 in 2003, and reduced to 11 μg m−3 in 2006, with about 50% decrease. In contrast, the summer minimum was 10 μg m−3 in 2004 and 9 μg m−3 in 2007, with only 10% decrease. This study suggests that the rapid decrease in the winter maximum was mainly due to the reduction of the BC emission in winter, implying the effective winter emission control at the Guanzhong Basin

    Measuring and Modeling Black Carbon (BC) Contamination in the SE Tibetan Plateau,

    No full text
    Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 &mu;g m&minus;3) is significantly higher than the concentrations (0.004&ndash;0.34 &mu;g m&minus;3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a &#39;leaking wall&#39;, whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 &mu;g m&minus;3) in a time scale of a few days. The analysis of the variability suggests that the &ldquo;leaking wall&rdquo; effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.</p

    Impact of Meteorological Parameters and Gaseous Pollutants on PM2.5 and PM10Mass Concentrations during 2010 in Xi’an, China

    No full text
    Mass concentrations of PM2.5 and PM10 from the six urban/rural sampling sites of Xi&rsquo;an were obtained during two weeks of every month corresponding to January, April, July and October during 2010, together with the six meteorological parameters and the data of two precursors. The result showed that the average annual mass concentrations of PM2.5 and PM10 were 140.9 &plusmn; 108.9 &micro;g m&ndash;3 and 257.8 &plusmn; 194.7 &micro;g m&ndash;3, respectively. Basin terrain constrains the diffusion of PM2.5 and PM10 concentration spatially. High concentrations in wintertime and low concentrations in summertime are due to seasonal variations of meteorological parameters and cyclic changes of precursors (SO2 and NO2). Stepwise Multiple Linear Regression (MLR) analysis indicates that relative humidity is the main factor influencing on meteorological parameter. Entry MLR analysis suggests that SO2 from local coal-burning power plants is still the primary pollutant. Trajectory cluster results of PM2.5 at BRR indicate that the entrained urban pollutants carried by the westerly or winter monsoon forms the dominant regional pollution sources in winter and spring. Ultraviolet (UV) aerosol index verified the source and pathway of dust storm in spring.</p

    Black carbon (BC) in a northern Tibetan mountain: effect of Kuwait fires on glaciers

    No full text
    The black carbon (BC) deposition on the ice core at Muztagh Ata Mountain, northern Tibetan Plateau, was analyzed. Two sets of measurements were used in this study, which included the air samplings of BC particles during 2004&ndash;2006 and the ice core drillings of BC deposition during 1986&ndash;1994. Two numerical models were used to analyze the measured data. A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions, and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo. The results show that during 1991&ndash;1992, there was a strong spike in the BC deposition at Muztagh Ata, suggesting that there was an unusual emission in the upward region during this period. This high peak of BC deposition was investigated by using the global chemical transportation model (MOZART-4). The analysis indicated that the emissions from large Kuwait fires at the end of the first Gulf War in 1991 caused this high peak of the BC concentrations and deposition (about 3&ndash;4 times higher than other years) at Muztagh Ata Mountain, suggesting that the upward BC emissions had important impacts on this remote site located on the northern Tibetan Plateau. Thus, there is a need to quantitatively estimate the effect of surrounding emissions on the BC concentrations on the northern Tibetan Plateau. In this study, a sensitivity study with four individual BC emission regions (Central Asia, Europe, the Persian Gulf, and South Asia) was conducted by using the MOZART-4 model. The result suggests that during the &ldquo;normal period&rdquo; (non-Kuwait fires), the largest effect was due to the Central Asia source (44 %) during the Indian monsoon period, while during the non-monsoon period, the largest effect was due to the South Asia source (34 %). The increase in radiative forcing increase (RFI) due to the deposition of BC on snow was estimated by using the radiative transfer model (SNICAR). The results show that under the fresh snow assumption, the estimated increase in RFI ranged from 0.2 to 2.5 W m&minus;2, while under the aged snow assumption, the estimated increase in RFI ranged from 0.9 to 5.7 W m&minus;2. During the Kuwait fires period, the RFI values increased about 2&ndash;5 times higher than in the &ldquo;normal period&rdquo;, suggesting a significant increase for the snow melting on the northern Tibetan Plateau due to this fire event. This result suggests that the variability of BC deposition at Muztagh Ata Mountain provides useful information to study the effect of the upward BC emissions on environmental and climate issues in the northern Tibetan Plateau. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.</p

    Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign

    No full text
    We present measurements of submicron aerosols in Tijuana, Mexico during the Cal-Mex 2010 field campaign. A suite of aerosol instrumentations were deployed, including a hygroscopic-volatility tandem differential mobility analyzer (HV-TDMA), aerosol particle mass analyzer (APM), condensation particle counter (CPC), cavity ring-down spectrometer (CRDS), and nephelometer to measure the aerosol size distributions, effective density, hygroscopic growth factors (HGF), volatility growth factors (VGF), and optical properties. The average mass concentration of PM0.6 is 10.39 +/- 7.61 1.mu g m(-3), and the derived average black carbon (BC) mass concentration is 2.87 +/- 2.65 mu g m(-3). There is little new particle formation or particle growth during the day, and the mass loading is dominated by organic aerosols and BC, which on average are 37% and 27% of PM1.0, respectively. For four particle sizes of 46, 81,151, and 240 nm, the measured particle effective density, HGFs, and VGFs exhibit distinct diurnal trends and size-dependence. For smaller particles (46 and 81 mm), the effective density distribution is unimodal during the day and night, signifying an internally mixed aerosol composition. In contrast, larger particles (151 and 240 nm) exhibit a bi-modal effective density distribution during the daytime, indicating an external mixture of fresh BC and organic aerosols, but a unimodal distribution during the night, corresponding to an internal mixture of BC and organic aerosols. The smaller particles show a noticeable diurnal trend in the effective density distribution, with the highest effective density (1.70 g cm(-3)) occurring shortly after midnight and the lowest value (0.90 g cm(-3)) occurring during the afternoon, corresponding most likely to primary organic aerosols and BC, respectively. Both HGFs and VGFs measured are strongly size-dependent. HGFs increase with increasing particle size, indicating that the largest particles are more hygroscopic. VGFs decrease with increasing particle size, indicating that larger particles are more volatile. The hygroscopicity distributions of smaller particles (46 and 81 nm) are unimodal, with a HGF value close to unity. Large particles typically exhibit a bi-modal distribution, with a non-hygroscopic mode and a hygroscopic mode. For all particle sizes, the VGF distributions are bimodal, with a primary non-volatile mode and a secondary volatile mode. The average extinction, scattering, and absorption coefficients are 86.04, 63.07, and 22.97 Mm(-1), respectively, and the average SSA is 0.75. Our results reveal that gasoline and diesel vehicles produce a significant amount of black carbon particles in this US Mexico border region, which impacts the regional environment and climate.</p
    corecore