207 research outputs found

    Preliminary Study on Air Injection in Annuli to Manage Pressure during Cementing

    Get PDF
    AbstractAlong with the development of low permeability reservoirs, underbalanced drilling technology is applied more and more widely. During the cementing operation of underbalanced drilling wells, cementing liquid can flow into the reservoir more easily for the absence of the mud cake, which certainly weakens the reservoir protection advantage of underbalanced drilling. Based on the methods of underbalanced drilling and managed pressure drilling, a new method of cement technology, Balanced Pressure Cementing Technology by Air Injection in Annuli, was put forward. The calculation models of the maximum depth of injection point and the maximum start-up pressure were built. Considering the power limitation of the pump, valves of gas lift were introduced and the calculation method of valve location was developed. This technology could effectively control the annulus pressure of wellbore, assure the cementing quality and protect the hydrocarbon reservoir, thus reduces the exploration and development cost

    SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks

    Full text link
    While Federated learning (FL) is attractive for pulling privacy-preserving distributed training data, the credibility of participating clients and non-inspectable data pose new security threats, of which poisoning attacks are particularly rampant and hard to defend without compromising privacy, performance or other desirable properties of FL. To tackle this problem, we propose a self-purified FL (SPFL) method that enables benign clients to exploit trusted historical features of locally purified model to supervise the training of aggregated model in each iteration. The purification is performed by an attention-guided self-knowledge distillation where the teacher and student models are optimized locally for task loss, distillation loss and attention-based loss simultaneously. SPFL imposes no restriction on the communication protocol and aggregator at the server. It can work in tandem with any existing secure aggregation algorithms and protocols for augmented security and privacy guarantee. We experimentally demonstrate that SPFL outperforms state-of-the-art FL defenses against various poisoning attacks. The attack success rate of SPFL trained model is at most 3%\% above that of a clean model, even if the poisoning attack is launched in every iteration with all but one malicious clients in the system. Meantime, it improves the model quality on normal inputs compared to FedAvg, either under attack or in the absence of an attack

    A Cooperative Deception Strategy for Covert Communication in Presence of a Multi-antenna Adversary

    Full text link
    Covert transmission is investigated for a cooperative deception strategy, where a cooperative jammer (Jammer) tries to attract a multi-antenna adversary (Willie) and degrade the adversary's reception ability for the signal from a transmitter (Alice). For this strategy, we formulate an optimization problem to maximize the covert rate when three different types of channel state information (CSI) are available. The total power is optimally allocated between Alice and Jammer subject to Kullback-Leibler (KL) divergence constraint. Different from the existing literature, in our proposed strategy, we also determine the optimal transmission power at the jammer when Alice is silent, while existing works always assume that the jammer's power is fixed. Specifically, we apply the S-procedure to convert infinite constraints into linear-matrix-inequalities (LMI) constraints. When statistical CSI at Willie is available, we convert double integration to single integration using asymptotic approximation and substitution method. In addition, the transmission strategy without jammer deception is studied as a benchmark. Finally, our simulation results show that for the proposed strategy, the covert rate is increased with the number of antennas at Willie. Moreover, compared to the benchmark, our proposed strategy is more robust in face of imperfect CSI.Comment: 33 pages, 8 Figure

    A Comparison of Pd 0

    Get PDF

    淋毒性副睪丸炎ノ療法追加

    Get PDF
    Abstract We demonstrate the synergistic antitumor effect of oridonin and the PI3K/mTOR inhibitor NVP-BEZ235 on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma (non-GCB DLBCL) both in vitro and in vivo. The underlying mechanism may be multifunctional, involving apoptosis, AKT/mTOR and NF-kB inactivation, and ROS-mediated DNA damage response. Our findings pave the way for a new potential treatment option for non-GCB DLBCL with the combination of oridonin and NVP-BEZ235

    Concurrent inhibition of FAK/SRC and MEK overcomes MEK inhibitor resistance in Neurofibromatosis Type I related malignant peripheral nerve sheath tumors

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas which lack effective drugs. Loss of the RAS GTPase-activating protein NF1 and subsequent overactivation of mitogen-activated protein kinase kinase (MAPK) signaling exist nearly uniformly in MPNST, making MAPK inhibition a promising therapeutic intervention. However, the efficacy of MEK inhibitor (MEKi) monotherapy was limited in MPNST and the relative mechanisms remained largely unexplored. In this study, we generated three MEKi-resistant cell models and investigated the mechanisms of MEKi resistance using high-throughput transcriptomic sequencing. We discovered that cell apoptosis and cell cycle arrest induced by MEKi were rescued in MEKi-resistant cells and the upregulation of LAMA4/ITGB1/FAK/SRC signaling conferred resistance to MEKi. In addition, concurrent inhibition of MAPK signaling and FAK/SRC cascade could sensitize MPNST cells to MEKi. Our findings provide potential solutions to overcome MEKi resistance and effective combination therapeutic strategies for treating MPNSTs

    Perovskite quantum dot solar cells fabricated from recycled lead-acid battery waste

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Materials Letters, copyright © 2021 American Chemical Societ, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsmaterialslett.1c00592.A cost-effective and environmentally friendly Pb source is a prerequisite for achieving large-scale, low-cost perovskite photovoltaic devices. Currently, the commonly used method to prepare the lead source is based on a fire smelting process, requiring a high temperature of more than 1000 °C, which results in environmental pollution. Spent car lead acid batteries are an environmentally hazardous waste; however, they can alternatively serve as an abundant and inexpensive Pb source. Due to “self-purification”, quantum dots feature a high tolerance of impurities in the precursor since the impurities tend to be expelled from the small crystalline cores during colloidal nucleation. Herein, PbI2 recycled from spent lead acid batteries via a facile low-temperature solution process is used to synthesize CsPbI3 quantum dots, which simultaneously brings multiple benefits including (1) avoiding pollution originating from the fire smelting process; (2) recycling the Pb waste from batteries; and (3) synthesizing high-quality quantum dots. The resulting CsPbI3 quantum dots have photophysical properties such as PLQY and carrier lifetimes on par with those synthesized from the commercial PbI2 due to expelling of the impurity Na atoms. The resulting solar cells deliver comparable power conversion efficiencies: 14.0% for the cells fabricated using recycled PbI2 and 14.7% for the cells constructed using commercial PbI2. This work paves a new and feasible path to applying recycled Pb sources in perovskite photovoltaics.Peer ReviewedPostprint (author's final draft
    corecore