4,437 research outputs found

    Search for C=+C=+ charmonium and XYZ states in e+e−→γ+He^+e^-\to \gamma+ H at BESIII

    Full text link
    Within the framework of nonrelativistic quantum chromodynamics, we study the production of C=+C=+ charmonium states HH in e+e−→γ + He^+e^-\to \gamma~+~H at BESIII with H=ηc(nS)H=\eta_c(nS) (n=1, 2, 3, and 4), χcJ(nP)\chi_{cJ}(nP) (n=1, 2, and 3), and 1D2(nD)^1D_2(nD) (n=1 and 2). The radiative and relativistic corrections are calculated to next-to-leading order for SS and PP wave states. We then argue that the search for C=+C=+ XYZXYZ states such as X(3872)X(3872), X(3940)X(3940), X(4160)X(4160), and X(4350)X(4350) in e+e−→γ + He^+e^-\to \gamma~+~H at BESIII may help clarify the nature of these states. BESIII can search XYZXYZ states through two body process e+e−→γHe^+e^-\to \gamma H, where HH decay to J/ψπ+π−J/\psi \pi^+\pi^-, J/ψϕJ/\psi \phi, or DDˉD \bar D. This result may be useful in identifying the nature of C=+C=+ XYZXYZ states. For completeness, the production of C=+C=+ charmonium in e+e−→γ+ He^+e^-\to \gamma +~H at B factories is also discussed.Comment: Comments and suggestions are welcome. References are update

    Electron-electron scatttering in Sn-doped indium oxide thick films

    Full text link
    We have measured the low-field magnetoresistances (MRs) of a series of Sn-doped indium oxide thick films in the temperature TT range 4--35 K. The electron dephasing rate 1/τφ1/\tau_{\varphi} as a function of TT for each film was extracted by comparing the MR data with the three-dimensional (3D) weak-localization theoretical predictions. We found that the extracted 1/τφ1/\tau_{\varphi} varies linearly with T3/2T^{3/2}. Furthermore, at a given TT, 1/τφ1/\tau_{\varphi} varies linearly with kF−5/2l−3/2k_F^{-5/2}l^{-3/2}, where kFk_{F} is the Fermi wavenumber, and ll is the electron elastic mean free path. These features are well explained in terms of the small-energy-transfer electron-electron scattering time in 3D disordered conductors. This electron dephasing mechanism dominates over the electron-phonon (ee-ph) scattering process because the carrier concentrations in our films are ∼\sim 3 orders of magnitude lower than those in typical metals, which resulted in a greatly suppressed ee-ph relaxation rate.Comment: 5 pages, 3 figure

    A comparison of different cluster mass estimates: consistency or discrepancy ?

    Full text link
    Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and their dynamical evolution. Using a hitherto largest sample of lensing clusters drawn from literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is an excellent agreement between the weak lensing, X-ray and isothermal sphere model determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2--4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters as well as an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.Comment: 16 pages with 7 PS figures, MNRAS in pres

    Stationary optomagnonic entanglement and magnon-to-optics quantum state transfer via opto-magnomechanics

    Full text link
    We show how to prepare a steady-state entangled state between magnons and optical photons in an opto-magnomechanical configuration, where a mechanical vibration mode couples to a magnon mode in a ferrimagnet by the dispersive magnetostrictive interaction, and to an optical cavity by the radiation pressure. We find that, by appropriately driving the magnon mode and the cavity to simultaneously activate the magnomechanical Stokes and the optomechanical anti-Stokes scattering, a stationary optomagnonic entangled state can be created. We further show that, by activating the magnomechanical state-swap interaction and subsequently sending a weak red-detuned optical pulse to drive the cavity, the magnonic state can be read out in the cavity output field of the pulse via the mechanical transduction. The demonstrated entanglement and state-readout protocols in such a novel opto-magnomechanical configuration allow us to optically control, prepare, and read out quantum states of collective spin excitations in solids, and provide promising opportunities for the study of quantum magnonics, macroscopic quantum states, and magnonic quantum information processing.Comment: Accepted to Quantum Sci. Techno
    • …
    corecore