175 research outputs found

    Accelerating Transducers through Adjacent Token Merging

    Full text link
    Recent end-to-end automatic speech recognition (ASR) systems often utilize a Transformer-based acoustic encoder that generates embedding at a high frame rate. However, this design is inefficient, particularly for long speech signals due to the quadratic computation of self-attention. To address this, we propose a new method, Adjacent Token Merging (A-ToMe), which gradually combines adjacent tokens with high similarity scores between their key values. In this way, the total time step could be reduced, and the inference of both the encoder and joint network is accelerated. Experiments on LibriSpeech show that our method can reduce 57% of tokens and improve the inference speed on GPU by 70% without any notable loss of accuracy. Additionally, we demonstrate that A-ToMe is also an effective solution to reduce tokens in long-form ASR, where the input speech consists of multiple utterances.Comment: Interspeech 202

    Prompting Large Language Models for Zero-Shot Domain Adaptation in Speech Recognition

    Full text link
    The integration of Language Models (LMs) has proven to be an effective way to address domain shifts in speech recognition. However, these approaches usually require a significant amount of target domain text data for the training of LMs. Different from these methods, in this work, with only a domain-specific text prompt, we propose two zero-shot ASR domain adaptation methods using LLaMA, a 7-billion-parameter large language model (LLM). LLM is used in two ways: 1) second-pass rescoring: reranking N-best hypotheses of a given ASR system with LLaMA; 2) deep LLM-fusion: incorporating LLM into the decoder of an encoder-decoder based ASR system. Experiments show that, with only one domain prompt, both methods can effectively reduce word error rates (WER) on out-of-domain TedLium-2 and SPGISpeech datasets. Especially, the deep LLM-fusion has the advantage of better recall of entity and out-of-vocabulary words

    ACCELERATION ON DIFFERENT BODY POSITIONS DURING RUNNING ON A TREADMILL

    Get PDF
    Many fitness index used V˙O2max and heart rate to estimate energy expenditure, but these current methods require expensive equipment for the direct measurement. This study tried to determine a more convenient way to estimate energy expenditure by comparing the relationship of heart rate with acceleration on different positions while running on a treadmill. Eight males (23-32 yr) wore three tri-axial accelerometers, and the placements of accelerometers were left wrist, trunk (low back) and left ankle. Each participant walked for 30 sec at 4 and 6 km·h-1, ran 30 sec at 8, 10, 12, 14, 16 km·h-1 after they keep stable heart rate in these speeds. All the total accelerations on three placements are significantly correlated with heart rate in this study which indicated that accelerations on human body is a good way to estimate energy expenditure. This information is very useful to develop a new device to accurately estimate energy expenditure using watch which is more convenient compare to current devices in the market

    Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts

    Full text link
    Large Language Models (LLMs) have achieved significant success across various natural language processing (NLP) tasks, encompassing question-answering, summarization, and machine translation, among others. While LLMs excel in general tasks, their efficacy in domain-specific applications remains under exploration. Additionally, LLM-generated text sometimes exhibits issues like hallucination and disinformation. In this study, we assess LLMs' capability of producing concise survey articles within the computer science-NLP domain, focusing on 20 chosen topics. Automated evaluations indicate that GPT-4 outperforms GPT-3.5 when benchmarked against the ground truth. Furthermore, four human evaluators provide insights from six perspectives across four model configurations. Through case studies, we demonstrate that while GPT often yields commendable results, there are instances of shortcomings, such as incomplete information and the exhibition of lapses in factual accuracy

    VLM-Eval: A General Evaluation on Video Large Language Models

    Full text link
    Despite the rapid development of video Large Language Models (LLMs), a comprehensive evaluation is still absent. In this paper, we introduce a unified evaluation that encompasses multiple video tasks, including captioning, question and answering, retrieval, and action recognition. In addition to conventional metrics, we showcase how GPT-based evaluation can match human-like performance in assessing response quality across multiple aspects. We propose a simple baseline: Video-LLaVA, which uses a single linear projection and outperforms existing video LLMs. Finally, we evaluate video LLMs beyond academic datasets, which show encouraging recognition and reasoning capabilities in driving scenarios with only hundreds of video-instruction pairs for fine-tuning. We hope our work can serve as a unified evaluation for video LLMs, and help expand more practical scenarios. The evaluation code will be available soon

    Implicit Image-to-Image Schrodinger Bridge for CT Super-Resolution and Denoising

    Full text link
    Conditional diffusion models have gained recognition for their effectiveness in image restoration tasks, yet their iterative denoising process, starting from Gaussian noise, often leads to slow inference speeds. As a promising alternative, the Image-to-Image Schr\"odinger Bridge (I2SB) initializes the generative process from corrupted images and integrates training techniques from conditional diffusion models. In this study, we extended the I2SB method by introducing the Implicit Image-to-Image Schrodinger Bridge (I3SB), transitioning its generative process to a non-Markovian process by incorporating corrupted images in each generative step. This enhancement empowers I3SB to generate images with better texture restoration using a small number of generative steps. The proposed method was validated on CT super-resolution and denoising tasks and outperformed existing methods, including the conditional denoising diffusion probabilistic model (cDDPM) and I2SB, in both visual quality and quantitative metrics. These findings underscore the potential of I3SB in improving medical image restoration by providing fast and accurate generative modeling
    • …
    corecore