1,896 research outputs found
Generative Face Completion
In this paper, we propose an effective face completion algorithm using a deep
generative model. Different from well-studied background completion, the face
completion task is more challenging as it often requires to generate
semantically new pixels for the missing key components (e.g., eyes and mouths)
that contain large appearance variations. Unlike existing nonparametric
algorithms that search for patches to synthesize, our algorithm directly
generates contents for missing regions based on a neural network. The model is
trained with a combination of a reconstruction loss, two adversarial losses and
a semantic parsing loss, which ensures pixel faithfulness and local-global
contents consistency. With extensive experimental results, we demonstrate
qualitatively and quantitatively that our model is able to deal with a large
area of missing pixels in arbitrary shapes and generate realistic face
completion results.Comment: Accepted by CVPR 201
- …