165 research outputs found

    Universal characteristics of one-dimensional non-Hermitian superconductors

    Full text link
    We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone (GBZ). The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect and their values of GBZ satisfy |\beta| = 1. If the non-Hermitian system has skin modes, these modes should be Z2 style, i.e., the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitian p- and s-wave topological superconductors. Topological phase transitions occur at \beta_{c}= \pm 1 in the two systems. In terms of Majorana Pfaffian, a Z2 non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence in non-Hermitian superconductors.Comment: 6 pages, 4 figure

    A New Non-Abelian Topological Phase of Cold Fermi Gases in Anisotropic and Spin-Dependent Optical Lattices

    Full text link
    To realize non-Abelian s-wave topological superfluid (TS) of cold Fermi gases, generally a Zeeman magnetic field larger than superfluid pairing gap is necessary. In this paper we find that using an anisotropic and spin-dependent optical lattice (ASDOL) to trap gases, a new non-Abelian TS phase appears, in contrast to an isotropic and spin-independent optical lattice. A characteristic of this new non-Abelian TS is that Zeeman magnetic field can be smaller than the superfluid pairing gap. By self-consistently solving pairing gap equation and considering the competition against normal state and phase separation, this new phase is also stable. Thus an ASDOL supplies a convenient route to realize TS. We also investigate edge states and the effects of a harmonic trap potential

    Ab Initio Studies on Interactions in K3_3C60_{60} under High Pressure

    Full text link
    Fullerene solids doped with alkali metals (A3_3C60_{60}, A = K, Rb, Cs) exhibit a superconducting transition temperature (TcT_c) as high as 40 K, and their unconventional superconducting properties have been a subject of debate. With application of high pressure on K3_3C60_{60} and Rb3_3C60_{60}, the experiments demonstrate the decrease of TcT_c. In this paper, we focus on K3_3C60_{60} and derive the structure of K3_3C60_{60} under different pressures based on first-principles calculations, exploring the trends of Coulomb interactions at various pressures. By utilizing the Maximally Localized Wannier function approach, Constrained Density Functional Perturbation Theory (cDFPT), and Constrained Random Phase Approximation (cRPA), we construct a microscopic low-energy model near the Fermi level. Our results strongly indicate that, in the K3_3C60_{60} system, as pressure increases, the effect of phonons is the key to intraorbital electron pairing. There is a dominance of the phonon-driven superconducting mechanism at high pressure

    Improving the Transferability of Adversarial Samples by Path-Augmented Method

    Full text link
    Deep neural networks have achieved unprecedented success on diverse vision tasks. However, they are vulnerable to adversarial noise that is imperceptible to humans. This phenomenon negatively affects their deployment in real-world scenarios, especially security-related ones. To evaluate the robustness of a target model in practice, transfer-based attacks craft adversarial samples with a local model and have attracted increasing attention from researchers due to their high efficiency. The state-of-the-art transfer-based attacks are generally based on data augmentation, which typically augments multiple training images from a linear path when learning adversarial samples. However, such methods selected the image augmentation path heuristically and may augment images that are semantics-inconsistent with the target images, which harms the transferability of the generated adversarial samples. To overcome the pitfall, we propose the Path-Augmented Method (PAM). Specifically, PAM first constructs a candidate augmentation path pool. It then settles the employed augmentation paths during adversarial sample generation with greedy search. Furthermore, to avoid augmenting semantics-inconsistent images, we train a Semantics Predictor (SP) to constrain the length of the augmentation path. Extensive experiments confirm that PAM can achieve an improvement of over 4.8% on average compared with the state-of-the-art baselines in terms of the attack success rates.Comment: 10 pages + appendix, CVPR 202

    Mutational Profile and Potential Molecular Therapeutic Targets of Pheochromocytoma

    Get PDF
    PurposePheochromocytoma/paraganglioma (PCC/PGL; collectively known as PPGL) can be driven by germline and somatic mutations in susceptibility genes. We aimed to investigate the mutation profile and clinical features of pathogenic genes in highly genetically heterogeneous PPGL and to preliminary explore molecular therapeutic targets in PPGL.MethodsWe established a panel of 260 genes, including susceptibility genes of PPGL and other important tumorigenic genes to sequence 107 PPGL tissues.ResultsOverall, 608 genomic mutations were identified in 107 PPGL tissues. Almost 57% of PPGL tissue samples exhibited pathogenic mutations, and the most frequently mutated gene was SDHB (15/107, 14%). SDHB and HRAS were the most commonly mutated genes in germline-mutated PPGL (25/107, 23%) and nongermline-mutated PPGL (36/107, 34%), respectively. In addition, novel pathogenic mutations were detected in sporadic PPGL. PPGL with mutations in the hypoxia pathway had an earlier onset and higher norepinephrine level than those in the kinase pathway. Receptor tyrosine kinase (RTK; 22%, 24/107), mitogen-activated protein kinase (MAPK; 14%, 15/107), and tyrosine kinase (TK; 2%, 2/107) pathways were the most frequently mutated pathways in PPGL.ConclusionOur results provided the genetic mutation profile in PPGL tissues. Genetic mutations in PPGL were mainly concentrated in the RTK, TK, and MAPK pathways, suggesting potential molecular therapeutic targets for PPGL
    • …
    corecore