1 research outputs found

    Toxicity of microcystins in the isolated hepatocytes of common carp (Cyprinus carpio L.)

    Get PDF
    The toxicity of hepatotoxic microcystins produced mainly by Microcystis aeruginosa in mammals and fishes was well studied in recent years. However, there were scarcely reports in toxic effects of microcystins on isolated hepatocytes of fishes, especially investigation of microcystin-induced apoptosis and/or necrosis in carp hepatocytes. In the present study, the isolated hepatocytes of common carp were exposed to various concentrations of microcystins (0.01, 0.1, 1, 10, 100, 1000 mu g L-1) for 2, 4, 8, 16 and 24 h, respectively, and cytotoxicity of microcystins in the toxin-treated cells was determined. Results of this study showed that cytotoxicity of microcystins on carp hepatocytes was time and dose-dependent, and the approximate LC50 of microcystins in carp hepatocytes was 169.2 mu g L-1. The morphological changes typical of apoptosis, such as blebbing of cell membrane, condensation and fragmentation of cell nucleus were observed in the hepatocytes exposed to microcystins (1, 10 and 100 mu g L-1) using fluorescence and differential interference contrast microscopy. Agarose gel electrophoresis of DNA demonstrated a typical apoptotic "ladder pattern" in microcystin-treated hepatocytes after 16 h of exposure. Results of the present study indicated that the form of cell death in microcystin-treated hepatocytes depend on the exposure dose of toxin. When lower concentration of microcystins (10 and 100 mu g L-1) was used for exposure, carp hepatocytes died in apoptosis while, when higher one used (1000 mu g L-1), they died in the form of necrosis. (C) 2006 Elsevier Inc. All rights reserved.The toxicity of hepatotoxic microcystins produced mainly by Microcystis aeruginosa in mammals and fishes was well studied in recent years. However, there were scarcely reports in toxic effects of microcystins on isolated hepatocytes of fishes, especially investigation of microcystin-induced apoptosis and/or necrosis in carp hepatocytes. In the present study, the isolated hepatocytes of common carp were exposed to various concentrations of microcystins (0.01, 0.1, 1, 10, 100, 1000 mu g L-1) for 2, 4, 8, 16 and 24 h, respectively, and cytotoxicity of microcystins in the toxin-treated cells was determined. Results of this study showed that cytotoxicity of microcystins on carp hepatocytes was time and dose-dependent, and the approximate LC50 of microcystins in carp hepatocytes was 169.2 mu g L-1. The morphological changes typical of apoptosis, such as blebbing of cell membrane, condensation and fragmentation of cell nucleus were observed in the hepatocytes exposed to microcystins (1, 10 and 100 mu g L-1) using fluorescence and differential interference contrast microscopy. Agarose gel electrophoresis of DNA demonstrated a typical apoptotic "ladder pattern" in microcystin-treated hepatocytes after 16 h of exposure. Results of the present study indicated that the form of cell death in microcystin-treated hepatocytes depend on the exposure dose of toxin. When lower concentration of microcystins (10 and 100 mu g L-1) was used for exposure, carp hepatocytes died in apoptosis while, when higher one used (1000 mu g L-1), they died in the form of necrosis. (C) 2006 Elsevier Inc. All rights reserved
    corecore