58 research outputs found
Analytical landing trajectories for embedded autonomy
This paper considers an optimal guidance law for the initial braking phase of a soft landing mission on a celestial body without atmosphere in which boundary conditions on height and velocity are specifed. The optimal lander attitude for the minimum fuel landing problem is found. An analytic optimal trajectory is achieved by expanding the thrust acceleration, gravitational acceleration and the cosine of the vertical attitude angle to a high-order polynomial. Coefficients of these polynomials are obtained from the boundary conditions. A fixed gain control law and a direct adaptive control law are then developed to track the analytical reference trajectory. Finally, a mission scenario is presented to illustrate the accuracy of the analytical trajectory and validity of the control laws developed. The use of direct adaptive control for embedded autonomy will be directly contrasted against a traditional fixed gain controller, using a Lunar landing scenario. The advantage of the direct adaptive control approach is that it does not require system monitoring to detect thruster failure and can adjust its gain automatically. As such, direct adaptive control combined with the developed analytical solution enables autonomy to be embedded within the lander guidance and control system. In addition, it is shown that direct adaptive control increases the probability of lander survival through faster transient response and stability than a traditional fixed gain controller with system level failure detection and recovery
Adaptive backstepping control for optimal descent with embedded autonomy
Using Lyapunov stability theory, an adaptive backstepping controller is presented in this paper for optimal descent tracking. Unlike the traditional approach, the proposed control law can cope with input saturation and failure which enables the embedded autonomy of lander system. In addition, this control law can also restrain the unknown bounded terms (i.e., disturbance). To show the controller’s performance in the presence of input saturation, input failure and bounded external disturbance, simulation was carried out under a lunar landing scenario
LEAFY Controls Auxin Response Pathways in Floral Primordium Formation
The transcription factor LEAFY is a master regulator of flowering and of flower development. It acts as a component of a switch that mediates the transition from the vegetative to the reproductive phase of plant development. Auxin is a plant hormone with many different roles in plant growth, including the induction of new primordia of both leaves and flowers at the shoot apex. We report that LEAFY acts in part by controlling the auxin response pathway in new primordia. Therefore, regulation of flower development by transcriptional master regulators and hormonal control of morphogenesis appear to be interacting processes. We found that hormone perception not only controls but is also controlled by the transcriptional signals that create plant form
Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires
Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively
Attitude recovery for microsatellite via magnetic torque
The problem of the attitude recovery via three orthogonal magnetic torquers solely for a moment-biased microsatellite is investigated. Three orthogonal magnetic torquers are innovatively used to detumble the microsatellite and then recover the attitude. Feedback linearization method is adopted to obtain the linear attitude dynamics. Based on the linearization model a quasi PD controller is designed, meanwhile μ -synthesis control theory is adopted to synthesis the robust controller. The performance and robustness of the two type controllers are compared with the classical PD controller in a magnetic storm simulation scenario. The robustness superiority of the μ -synthesis controller over classical PD and quasi PD controllers is obviously. ©2009 IEEE
- …