1,404 research outputs found

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications

    Octa­butyl­bis­(μ2-2-chloro-5-nitro­benzoato)bis­(2-chloro-5-nitro­benzoato)di-μ3-oxido-tetra­tin(IV)

    Get PDF
    The title complex, [Sn4(C4H9)8(C7H3ClNO4)4O2], is a cluster formed by a crystallographic inversion center around the central Sn2O2 ring. Both of the two independent Sn atoms are five-coordinated, with distorted trigonal–bipyramidal SnC2O3 geometries. One Sn atom is coordinated by two butyl groups, one O atom of the benzoate anion and two bridging O atoms, whereas the other Sn atom is coordinated by two butyl groups, two O atoms of the benzoate anions and a bridging O atom. The O atoms of the bridging benzoate anion are disordered over two sites with an occupancy ratio of 0.862 (12):0.138 (12). One of the butyl groups coordinated to the Sn2O2 ring is disordered over two sites with an occupancy ratio of 0.780 (8):0.220 (8), whereas both of the two butyl groups coordinated to the other Sn atom are disordered over two sites with occupancy ratios of 0.788 (5):0.212 (5) and 0.827 (10):0.173 (10). All the butyl groups are equatorial with respect to the SnO3 trigonal plane. In the crystal, complex mol­ecules are stacked down [010] with weak inter­molecular C—H⋯π inter­actions stabilizing the crystal structure

    Impurity effect of Lambda hyperon on collective excitations of atomic nuclei

    Full text link
    Taking the ground state rotational band in 24^{24}Mg as an example, we investigate the impurity effect of Λ\Lambda hyperon on collective excitations of atomic nuclei in the framework of non-relativistic energy density functional theory. To this end, we take into account correlations related to the restoration of broken symmetries and fluctuations of collective variables by solving the eigenvalue problem of a five-dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom. The parameters of the collective Hamiltonian are determined with constrained mean-field calculations for triaxial shapes using the SGII Skyrme force. We compare the low-spin spectrum for 24^{24}Mg with the spectrum for the same nucleus inside Λ25^{25}_{\Lambda}Mg. It is found that the Λ\Lambda hyperon stretches the ground state band and reduces the B(E2:21+→01+)B(E2:2^+_1 \rightarrow 0^+_1) value by ∼9\sim 9%, mainly by softening the potential energy surface towards the spherical shape, even though the shrinkage effect on the average proton radius is only ∼0.5\sim0.5%.Comment: 16 pages, 5 figures, and 1 tabl

    Risk Aversion as a Perceptual Bias

    Get PDF
    The theory of expected utility maximization (EUM) explains risk aversion as due to diminishing marginal utility of wealth. However, observed choices between risky lotteries are difficult to reconcile with EUM: for example, in the laboratory, subjects' responses on individual trials involve a random element, and cannot be predicted purely from the terms offered; and subjects often appear to be too risk averse with regard to small gambles (while still accepting sufficiently favorable large gambles) to be consistent with any utility-of-wealth function. We propose a unified explanation for both anomalies, similar to the explanation given for related phenomena in the case of perceptual judgments: they result from judgments based on imprecise (and noisy) mental representation of the decision situation. In this model, risk aversion is predicted without any need for a nonlinear utility-of-wealth function, and instead results from a sort of perceptual bias — but one that represents an optimal Bayesian decision, given the limitations of the mental representation of the situation. We propose a specific quantitative model of the mental representation of a simple lottery choice problem, based on other evidence regarding numerical cognition, and test its ability to explain the choice frequencies that we observe in a laboratory experiment

    The thermal evolution of nuclear matter at zero temperature and definite baryon number density in chiral perturbation theory

    Full text link
    The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond 1150MeV1150 \mathrm{MeV}, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.Comment: 17 pages, 9 figures, revtex

    ATM-based TH-SSMA network for multimedia PCS

    Get PDF
    Personal communications services (PCS) promise to provide a variety of information exchanges among users with any type of mobility, at any time, in any place, through any available device. To achieve this ambitious goal, two of the major challenges in the system design are: i) to provide a high-speed wireless subsystem with large capacity and acceptable quality-of-service (QoS) and ii) to design a network architecture capable of supporting multimedia traffic and various kinds of user mobility. A time-hopping spread-spectrum wireless communication system called ultra-wide bandwidth (UWB) radio is used to provide communications that are low power, high data rate, fade resistant, and relatively shadow free in a dense multipath environment. Receiver-signal processing of UWB radio is described, and performance of such communications systems, in terms of multiple-access capability, is estimated under ideal multiple-access channel conditions. A UWB-signal propagation experiment is performed using the bandwidth in excess of 1 GHz in a typical modern office building in order to characterize the UWB-signal propagation channel. The experimental results demonstrate the feasibility of the UWB radio and its robustness in a dense multipath environment. In this paper, an ATM network is used as the backbone network due to its high bandwidth, fast switching capability, flexibility, and well-developed infrastructure. To minimize the impact caused by user mobility on the system performance, a hierarchical network-control architecture is postulated. A wireless virtual circuit (WVC) concept is proposed to improve the transmission efficiency and simplify the network control in the wireless subsystem. The key advantage of this network architecture and WVC concept is that the handoff can be done locally most of the time, due to the localized behavior of PCS users.published_or_final_versio

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    Get PDF
    BACKGROUND: Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. RESULTS: To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. CONCLUSION: Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes
    • …
    corecore